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Summary 
 
Convolutional-based neural network (CNN-based) architectures have shown promise in performing 

denoising tasks. However, it can be demonstrated that their predictions are of limited use for some tasks 

because they produce signal leakage. For these tasks, a possible improvement is to incorporate CNN-

based architectures as one component of, rather than replacement for, the conventional denoising 

algorithms. In this paper, we formally define a class of denoising problems usually solved iteratively 

for which using CNN-based predictions as an initial solution can improve efficiency. We illustrate our 

points using a land data deblending example, for which the CNN-based prediction quality was higher 

than that of the conventional first iteration but lower than that of the final product. The CNN-

complemented conventional deblending leads to satisfactory and efficient results. 
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Towards using neural networks to complement conventional seismic processing algorithms 
 

Introduction 

Deep Learning (DL) for seismic processing represents an active field of research. For many seismic 

processing applications, physics-based state-of-the-art algorithms are available, with rigorous criteria 

for success. Most of the current DL investigations consist of learning to mimic the results of these 

algorithms, i.e., to efficiently predict the processed outcomes from the data using neural networks (NN), 

especially convolutional-based (CNN-based) architectures (Richardson et al., 2019; Mandelli et al., 

2019). These have the potential to add value, for instance, by learning the best of various existing 

workflows or decreasing turnaround time. However, using the neural network predictions in place of 

the conventionally processed data remains a challenge because, among other reasons, the predictions 

often produce signal leakage, a loss of signal amplitude, violating one of the process success criterion 

(Hou and Messud, 2021). In some cases, the leakage might be due to an imperfect tuning of DL 

parameters and thus eventually overcome. In other cases, however, the leakage could be due to a 

fundamental limitation of DL. Understanding the distinction between these cases is crucial in the quest 

for an efficient use of DL in seismic processing. 
 

Peng et al. (2021) took a step in this direction. They propose a theoretical foundation for the use of 

CNN-based architectures with ReLU internal activations to predict the outcomes of a specific class of 

various seismic processing tasks. Their work can also be used to define classes of seismic processing 

tasks for which CNN-based architectures will encounter difficulties predicting outcomes rivaling those 

of conventional algorithms, i.e., they will always result in signal leakage. In these cases, a better possible 

approach is to use CNN-based architectures as a building block (or component) of the conventional 

algorithms, rather than trying to replace their outcomes. Here, we explore this approach, which has 

already been adopted in other application fields, e.g., Borgerding et al. (2017) and Pandit et al. (2020). 

We start by formally defining a general class of denoising problems (including deghosting and 

deblending among others), usually solved iteratively. Adapting the work of Peng et al. (2021), we then 

identify problems for which the use of CNN-based architectures (with ReLU internal activations) could 

be adapted to directly predict denoised outcomes. For some other problems, we propose to use the CNN-

based predictions inside the denoising algorithm as an initial solution for the iterations. We illustrate 

our points on a land field data deblending example. 
 

Denoising problems and CNN-based architectures 

We consider processing algorithms that can be formulated in the following optimization problem: 
 

 min
𝜶

‖𝑾 𝑳 𝜶 − 𝒅𝑜𝑏𝑠‖2
2 + ‖𝐛 ⊙ 𝜶‖1 .     (1) 

 

𝒅𝑜𝑏𝑠 is a vector representing the observed (noisy) data and 𝑾 is a matrix representing the noise 

modelling operator (e.g., blending); 𝑾 is parameterized by prior physical information and, in many 

applications, leads to a strongly under-determined problem where constraints must be added. A sparsity 

constraint is often considered, acting on a vector 𝜶 which represents the denoised data vector 𝒅 through 
 

 𝒅 = 𝑳 𝜶.            (2) 
 

𝑳 is the matrix that represents the transformation from a certain domain, into which 𝜶 lives, to the data 

domain (e.g., 𝑳 might represent the inverse of a curvelet transform). The 𝑙1 sparsity constraint in the 

second term of eq. (1) enforces the sparsity of 𝜶, with 𝐛 as the associated weight vector that allows to 

tune the sparsity level (⊙ denotes element-wise multiplication). The problem in eq. (1) is usually solved 

using an iterative gradient-descent-based method (as the 𝑙1 constraint brings non-linearity). The 

iterations are often initialized with a noncommittal null vector 𝜶(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0, in the absence of anything 

better. Once the final iteration vector 𝜶(𝑓𝑖𝑛𝑎𝑙) is obtained, the denoised data outcome 𝒅 is deduced by 

applying eq. (2). 
 

We consider applications where 𝑾 has a complex structure and is large. Then, many computationally 

costly iterations are usually required to converge. To mitigate this, some preconditioner matrix 𝑷 can 

be added in the 𝑙2-norm part of eq. (1), multiplying its argument on the left by 𝑷. Detailing this 

procedure goes beyond the scope of this paper. Another possibility is to start iterating from a better 

𝜶(𝑖𝑛𝑖𝑡𝑖𝑎𝑙), which interests us here. In particular, we would need an 𝜶(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) of much better quality than 
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(𝑾 𝑳)𝒕 𝒅𝑜𝑏𝑠 (which is close to the first gradient-descent iteration result starting from 𝜶(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0; “𝑡” 

denotes the transpose). 

The use of CNN-based architectures to predict the outcomes of denoising problems of the form 

considered here has already been explored (Richardson et al., 2019; Mandelli et al., 2019). The goal is 

to train a CNN-based 𝑭𝜃 (𝜃 representing the convolutional kernels and bias parameters) with the hope 

that the corresponding predictions, 
 

 𝒅𝑝𝑟 = 𝑭𝜃(𝒅𝑜𝑏𝑠),      (3) 
 

represent a good approximation of the conventional algorithm’s outcomes 𝒅, on a given denoising task. 

One prerequisite, to have a chance to succeed, is to be able to relate CNN-based architectures to a 

reparameterization of the problems in eqs. (1) and (2). Peng et al. (2021) describe situations where this 

can occur. To transfer their conclusions to the problem considered here, we use the variable change in 

eq. (2) to reformulate eq. (1) as (superscript “−𝑝” denotes the pseudo-inverse) 
 

 min
𝒅

‖(𝑾 𝑳) 𝑳−𝒑 𝒅 − 𝒅𝑜𝑏𝑠‖2
2 + ‖𝐛 ⊙ 𝑳−𝒑 𝒅‖1 .    (4) 

 

Applying the reasoning of Peng et al. (2021) to eq. (4), we deduce that CNN-based architectures with 

ReLU internal activations can represent a valid reparameterization of our problems if the noise 

modelling operator 𝑾 ≈ (𝑾 𝑳) 𝑳−𝒑 is convolutional (i.e., has a Toeplitz matrix form) and can be split 

into a product of smaller convolution kernels related to sparse domains (see eq. (3) in Peng et al. (2021)). 

This hypothesis is often: 

• True for denoising problems like deghosting (Peng et al., 2021). For these problems, it is pertinent 

to work on tuning the DL parameters to eliminate signal leakage and allow using 𝒅𝑝𝑟 directly as an 

approximation of 𝒅. This could help reduce the cost of the conventional algorithm. 

• False for problems like deblending, where 𝑾 is far from having a Toeplitz matrix form (Guillouet 

et al., 2016). For these problems, CNN-based predictions 𝒅𝑝𝑟 fundamentally cannot provide an 

approximation of 𝒅 sufficient for a direct use. In practice, even if 𝒅𝑝𝑟 contained many features of 

𝒅, it would tend to exhibit non-negligible signal leakage, whatever the DL parameter used. 

However, 𝒅𝑝𝑟 might lead to a better initializer of the conventional processing by taking  
 

 𝜶(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 𝑳−𝒑 𝒅𝑝𝑟  = 𝑳−𝒑 𝑭𝜃(𝒅𝑜𝑏𝑠).    (5) 
 

This could help to significantly accelerate the convergence of the conventional algorithm; this 

observation represents the first main proposal of this article, with the second main point being the 

understanding of the class of denoising problems where this could apply. In such an application, DL 

complements the conventional algorithm, which can be considered as a post-processing of the DL 

prediction to eliminate the signal leakage. We next provide a field data illustration, in the context of a 

land acquisition dataset deblending problem. 

 

Land deblending example 

In the following land deblending application modelized using eq. (4), 𝑳 represents the transform from 

the curvelet domain to the data domain and 𝑾 represents a multi-convolutional matrix (that is Toeplitz 

only per blocks, each block containing the source signature associated with each shot) multiplied by a 

“restriction” matrix (Guillouet et al., 2016). Thus, 𝑾 is far from having a Toeplitz matrix structure and 

has many more columns than rows.  
 

Fig. 1a shows a blended data 𝒅𝑜𝑏𝑠 example from a 3D land, wide-azimuth, broadband acquisition in the 

north of the Sultanate of Oman (Al Kiyumi et al., 2021), obtained using simultaneous shooting (Shorter 

et al., 2017). The deblending is performed in the common receiver domain. The conventional algorithm 

requires many costly iterations to converge towards the deblended data 𝒅 in Fig. 1b (top). As the 

deblending occurs early in the processing sequence, we must be very careful that the algorithm preserves 

all the signal. To ensure this, a blending noise model is inverted for (bottom of Fig. 1) and then 

subtracted from the blended data to get the deblended data (top of Figs. 1b, c, d, e); To avoid signal 

leakage, the reflectivity model used to derive the noise model needs to be QCed for residual blending 

noise. 
 

We now consider using DL to learn to predict the deblending outcome. We use a CNN-based 
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architecture with ReLU internal activations, adapted from Unet and representing a good compromise 

between quality and cost (Messud and Chambefort, 2020). The training data consists of a few blended 

data, 𝒅𝑜𝑏𝑠, and deblended data produced by the conventional deblending algorithm, 𝒅. Less than 0.1% 

of the total data was selected for the training (unsupervised machine learning was used to classify the 

blended data into clusters, which were used to define a pertinent data subset). The effectiveness of using 

CNN-based predictions to deblend the rest of the data was then evaluated. Fig. 1c illustrates that it does 

not subtract enough blending noise (circled areas). Because of the complex structure of 𝑾, the 

considerations above allow us to understand that CNN-based architectures may not be able to predict 

the deblending outcomes well enough for direct use. They also help us to infer that the use of other 

architectures like DUnet (Peng et al., 2021) should not dramatically improve the results. 

 
Figure 1: Common receiver domain data. Top: a) Blended data 𝒅𝒐𝒃𝒔, b) conventionally deblended data 

𝒅, c) CNN-based prediction 𝒅𝒑𝒓, d) deblended data using (c) as an initializer of the conventional 

deblending (number of needed iterations reduced by 80% compared to (b)), e) Simply applying the 

transpose, i.e., 𝑳 (𝑾 𝑳)𝒕 𝒅𝒐𝒃𝒔 (close to one conventional algorithm iteration). Bottom: Modelled 

blending noise subtracted from the data. The ovals highlight the amplitude leakage in the CNN-based 

blending noise predictions ((c), bottom). 

A better approach is to use CNN-based predictions within the conventional deblending algorithm, e.g., 

as an improved initial solution, following the proposal mentioned above. Fig. 1d shows that this 

produces a deblending result of similar quality to the conventional deblending, Fig. 1b, with a reduction 

of 80% in the number of iterations (Al Kiyumi et al., 2021). As each of these iterations are costly, the 

efficiency of the deblending is much increased (even accounting for DL training). Fig. 1e shows the 

result of applying 𝑳 (𝑾 𝑳)𝒕 𝒅𝒐𝒃𝒔; we illustrate here that any remaining blending noise in the primary 

model will results in signal leakage once subtracted from the original data. 

 
Figure 2: NMO stack domain data. a) Blended data, b) conventionally deblended data, c) deblended 

data using the CNN-based prediction as an initializer of the conventional deblending, d) difference 

between (b) and (c), e) difference between (b) and (c) with a gain of 20dB. 
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To further QC the results, Fig. 2 shows normal moveout (NMO) stack domain comparisons between the 

methods discussed here. This additional control confirms that the signal is as well preserved when using 

our proposed DL-complemented deblending as with the conventional method.  
 

Conclusions and challenges 

CNN-based architectures, with their versatility, appear to be a promising way to tackle denoising tasks. 

However, using their predictions directly may be insufficient for a class of various denoising tasks 

solved iteratively, including deblending, resulting in signal leakage regardless of the DL parameters. 

For these tasks, a possible improvement will be to use CNN-based architectures as a component of the 

conventional denoising algorithms instead of trying to replace their outcomes, for instance as an initial 

solution for the iterations, to bring better efficiency. We illustrated our points using a land data 

deblending example, on which an approach based solely on neural networks gives a result of insufficient 

quality compared to the conventional algorithm, while our DL-complemented approach provides 

satisfactory and efficient results. 
 

We proposed one possible way to integrate CNN-based architectures into conventional denoising 

algorithms. Finding other effective, and possibly better, ways still represents an open question. For 

instance, we could consider using neural network predictions through an additional prior within the 

conventional algorithm, as already done in other fields (Borgerding et al., 2017). Indeed, the sparse 

inversion methods considered here can handle large amplitude variations in the data, which is crucial 

for deblending. However, it is not easy to reconstruct very low amplitude signal with conventional 

techniques (this requires a very fine tuning of the sparsity constraint, related to the 𝐛 in eq. (1)), and 

modelling these low amplitudes is crucial to improve current deblending. Conversely, neural networks 

can succeed in preserving low amplitudes, but experience difficulties in handling large amplitude 

variations. A successful way to improve deblending could be to merge the benefits of both approaches, 

namely having a neural network prior powerful enough to preserve the low amplitudes, while tackling 

the problem of reconstructing events with widely different amplitudes using conventional techniques. 
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