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Summary 

Seismic time-lapse (4D) surveys have been widely used to 
quantitatively monitor the geophysical property changes 
within hydrocarbon reservoirs due to production effects. 
Full-waveform inversion (FWI), which has become one of 
the most reliable tools for velocity model building (VMB), 
is a natural technology choice for this purpose. However, 
robust reconstruction of time-lapse geophysical property 
changes within reservoirs using FWI remains challenging. 
Time-lapse signals are weak compared to the seismic 
response of the background model and thus vulnerable to 
noise and possible damage by data preprocessing. Imperfect 
repeatability of the baseline and monitor surveys also 
introduces uncertainties into the inverted time-lapse 
changes. To address these issues, we propose a 4D FWI 
approach, which jointly inverts both baseline and monitor 
data sets using a time-lag cost function with a target-oriented 
regularization scheme. This approach enhances the 4D 
signal within reservoirs while suppressing 4D noise away 
from them. We demonstrate our method using a synthetic 
and a field data example. We observe that it not only gives 
an interpretable 4D velocity difference, but also improves 
the 4D migration difference when compared with 
conventional 4D approaches. 

Introduction 

Time-lapse processing attempts to extract information of the 
geophysical property changes within reservoirs. Contrast of 
amplitude versus offset/angle (AVO/AVA) between the 
images from baseline and monitor data sets indicates 
variation of P- and S-wave velocity and density, which is 
related to pressure and fluid saturation changes (Landrø, 
2001). As a common practice, the same velocity model is 
usually used for migrations of both baseline and monitor 
data, assuming the impact of 4D velocity changes to the 
migration difference is a second-order effect. 

With improved algorithms and compute power, FWI has 
emerged as a routine tool for VMB and offers an alternative 
approach for directly characterizing time-lapse model 
changes within reservoirs. Straightforward subtraction of 
two separate FWI models using baseline and monitor data 
sets, or parallel inversion, has been applied to obtain the 
time-lapse changes within reservoirs (Kamei and Lumley, 
2017). However, the results usually suffer from weak time-
lapse signal of the 4D data and uncancelled inversion 
artifacts caused by the non-repeatability of the baseline and 
monitor acquisitions. Moreover, without a good starting 
model, the two inversion results may converge to different 
local minima (Mulder and Plessix, 2008). Various efforts 
have been carried out to tackle these issues. Double-
difference inversion jointly inverts both baseline and 
monitor data sets, emphasizing the differences of time-lapse 
data during inversion. Therefore, double-difference 
inversion reduces the possibility of converging to different 
local minima for different data sets (Denli and Huang, 2009). 
However, double-difference inversion requires nearly 

perfect repeatability of the time-lapse data, which becomes 
an obstacle for field data applications. The sequential 
approach inverts the baseline and monitor data sets in the 
order of recording time. Its application requires neither 
perfect repeatability nor an accurate starting model 
(Asnaashari et al., 2014). Nonetheless, a better starting 
model and data repeatability are preferred for optimal 
inversion results. Target-oriented inversion aims to reduce 
the model space of the inversion to the area of interest, which 
is valid for 4D applications, but it usually assumes good 
accuracy in the area outside of the target, which is not always 
applicable (Malcolm and Willemsen, 2016). 

We propose an FWI approach that jointly inverts baseline 
and monitor data sets to reconstruct both baseline and 
monitor models at the same time. This approach does not 
require perfect repeatability of the two acquisitions. The 
combined data sets include more input seismic traces, which 
increases constraints on the output models. In addition, we 
apply a time-lag cost function to leverage the stable 
performance of Time-lag FWI (TLFWI) for different data 
types and different geologic settings (Zhang et al., 2018; 
Wang et al., 2019). Furthermore, a target-oriented 
regularization approach is used to enhance 4D signals in the 
reservoirs as well as to suppress 4D noise caused by poor 
data repeatability and possible crosstalk between the 
inverted baseline and monitor models away from the 
reservoirs. The synthetic and field data examples 
demonstrate the effectiveness of our approach in building the 
time-lapse model and reducing the 4D noise when the 
respective 4D FWI models are used to migrate the baseline 
and monitor data.  

Method 

FWI inverts the subsurface model by minimizing the 
difference between synthetic and recorded seismic data 
(Lailly, 1983; Tarantola, 1984). Alternatively, TLFWI 
adapts the inversion with a kinematics-only cost function to 
mitigate the cycle-skipping and amplitude-discrepancy 
issues as follows (Zhang et al., 2018): 

  𝜒𝜒(𝑣𝑣) = ∑ 𝑐𝑐Δ𝜏𝜏2𝑠𝑠,𝑟𝑟,𝑤𝑤 ,                                              (1) 

where 𝑣𝑣 is the velocity model, 𝑐𝑐 is a crosscorrelation 
coefficient between the recorded data and modeled synthetic 
data, 𝑤𝑤 is the window index, Δ𝜏𝜏 is the time shift between the 
recorded data and modeled synthetic data, and 𝑠𝑠 and 𝑟𝑟 are 
the source and receiver index, respectively.  

For time-lapse data, we propose to invert the baseline and 
monitor data sets jointly: 

  𝜒𝜒(𝑣𝑣𝑏𝑏 ,𝑣𝑣𝑚𝑚) = ∑ 𝑐𝑐𝑏𝑏Δ𝜏𝜏𝑏𝑏2𝑠𝑠𝑏𝑏,𝑟𝑟𝑏𝑏,𝑤𝑤𝑏𝑏  +  ∑ 𝑐𝑐𝑚𝑚Δ𝜏𝜏𝑚𝑚2𝑠𝑠𝑚𝑚,𝑟𝑟𝑚𝑚,𝑤𝑤𝑚𝑚  

  + 𝜆𝜆1�|𝑆𝑆(𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑏𝑏)|�𝑇𝑇𝑇𝑇 +  𝜆𝜆2�|(1 − 𝑆𝑆)(𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑏𝑏)|�2
2 , (2) 

where the subscripts 𝑏𝑏 and 𝑚𝑚 refer to baseline and monitor. 
The TV-norm is defined as 

         �|𝑣𝑣|�
𝑇𝑇𝑇𝑇

= ∑ �|∇x𝑣𝑣𝑖𝑖|2 + �∇y𝑣𝑣𝑖𝑖�
2 + |∇𝑧𝑧𝑣𝑣𝑖𝑖|2𝑖𝑖  ,                (3) 
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Joint 4D FWI 

where 𝑖𝑖 is the index of spatial grids in a Cartesian coordinate 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧). The scaling factor 𝑆𝑆 ∈ [0, 1] is designed based on 
a target interpretation with a value of 1 in the reservoir and 
a value of 0 far away from it. The third and fourth terms in 
Equation 2 effectively apply a TV regularization for 
suppressing 4D noise while preserving 4D structures when 
𝑆𝑆 = 1, a Tikhonov regularization for tying baseline and 
monitor models when 𝑆𝑆 = 0, and a linear combination of 
them when 𝑆𝑆 ∈ (0,1). The regularization parameters 𝜆𝜆1 and 
𝜆𝜆2 are defined into physically meaningful scales based on 
the initial velocity model, and, in practice, the optimal 
parameters fall into a relatively narrow range of values. This 
approach does not require perfect repeatability of the two 
surveys, as baseline and monitor data are exclusively in the 
first and second terms.  

Synthetic and field data examples 

Figure 1a shows the 2D model for our synthetic tests. A 
towed-streamer acquisition survey was generated, consisting 
of 800 shots spaced every 25 m. Each shot contained 800 
receivers. We generated the synthetic data using a Ricker 
wavelet centered at 25 Hz. We started our FWI tests from a 
smoothed version of the baseline model (Figure 1b). The 
monitor model differed from the baseline model in one target 
area (Figure 1c). The difference of the migration images 
using baseline and monitor data based on true models serves 
as a reference for the later test results (Figure 1d).  

For this synthetic example, we compared different 4D FWI 
approaches using the same time-lag misfit function but with 
different inversion strategies: parallel, double-difference, 
and joint inversion. The time-lapse velocity result of parallel 
inversion is shown in Figure 2a. Although the velocity 
within the target area is well inverted, parallel inversion 
leaves strong perturbation leakage in the background model. 
As a result, the 4D migration difference (Figures 2b) exhibits 
noise beneath the target area. Compared to the parallel 
approach, the double-difference method results in reduced 
leakage in the velocity model given this perfectly repeated 
synthetic data (Figure 2c), but with a similar 4D migration 

difference (Figure 2d). Our proposed method updates both 
the baseline and monitor models in one joint inversion. It 
leads to a much more focused 4D velocity difference (Figure 
2e) and reduced 4D migration noise (Figure 2f) than the 
double-difference approach. Among all three 4D FWI 
approaches, joint 4D FWI gives 4D velocity and migration 
differences that best resemble the reference results in Figures 
1c and 1d for this synthetic example. 

The field data example is from the Pyrenees field off the 
coast of Exmouth, Western Australia. The baseline and 
monitor data sets were acquired in 2006 and 2013, 
respectively. Both surveys have a cable length of 3600 m, 
but with different cable depths: 6 m for the baseline data set 
and 15 m for the monitor data set. The reservoir is situated 
at a depth of 1200 m, which is around the limit of the diving 
wave penetration depth of these acquisitions. 

The conventional 4D approach, where the 4D migration 
difference from the baseline and monitor data sets is 
obtained using a common velocity model (the one obtained 
by 3D FWI using both baseline and monitor data), shows 
clear 4D signal at the reservoir level and some spurious 4D 
differences (red arrow) in the deeper area (Figures 3a and 
3d). Figures 3b and 3c show the baseline and monitor models 
from joint 4D FWI, respectively. The direct subtraction of 
both models gives clear 4D velocity signal around the 
reservoir (Figure 3e). The new 4D migration difference from 
the baseline and monitor data sets using their corresponding 
velocity models from joint 4D FWI is shown in Figure 3f, 
with no sign of the spurious 4D difference we see in Figure 
1d. This indicates that the 4D velocity difference in the 
reservoir is significant and, thus, cannot be ignored for the 
4D migration difference. Figure 4 compares the surface 
offset gathers below the reservoir of the monitor data 
migrated using the common velocity model (Figure 4a), i.e., 
the velocity model used for conventional 4D migration, and 
the monitor model from joint 4D FWI (Figure 4b). Our joint 
4D monitor model gives better event focusing and flatter 
gathers (box in Figure 4b).

 
Figure 1. (a) The true baseline model, (b) the initial model for FWI tests, (c) the true time-lapse difference in the target, and (d) the 4D migration 
difference using the true baseline and monitor models. 

(a) (b)

(c) (d)
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Joint 4D FWI 

 
Figure 2. (a) 4D velocity difference by parallel inversion and (b) corresponding 4D migration difference; (c) 4D velocity difference by double-
difference inversion and (d) corresponding 4D migration difference; (e) 4D velocity difference by joint 4D FWI and (f) corresponding 4D migration 
difference. 

Conclusions and discussion 

We implemented a joint 4D FWI scheme that simultaneously 
inverts for the baseline and monitor models using a time-lag 
cost function and a target-oriented regularization term. The 
time-lag cost function can better tackle the common issues 
of FWI, such as cycle-skipping and amplitude-mismatching 
between modeled data and recorded data. The target-
oriented regularization scheme can enhance the 4D signals 
in the reservoirs while suppressing 4D noise away from 
them. Using both synthetic and field data examples, we 
demonstrated that it provides directly interpretable 4D 
velocity signals that are consistent with 4D migration signals 
and production history. It also reduces 4D migration noise 
by providing respective velocity models to migrate the 
baseline and monitor data correspondingly. Compared to the 
common velocity model obtained by 3D FWI, the monitor 
model from joint 4D FWI gives better event focusing and 
gather flatness for the monitor data as well as reduced 4D 
noise below the reservoirs. 

Conventionally, strenuous preprocessing steps with extra 
caution must be carried out to reduce 4D noise from different 
sources. However, it is very difficult to remove all noise 
perfectly without preprocessing-induced 4D noise and signal 
damage. FWI is resilient to noise in the input data because 
of its inherent stacking procedure. Our proposed joint 4D 
FWI approach can use input data sets with minimal 
preprocessing, which reduces the chance of signal damage 
and significantly reduces the turnaround time. 

The 4D signal in the migration difference is usually much 
weaker than the 3D migration amplitude, and the 4D velocity 
difference is often even weaker. For this reason, 4D velocity 
signals can be easily overwhelmed in joint 4D FWI by 
imperfections such as initial model inaccuracy and input 
non-repeatability.  

The quality of the initial model plays a crucial role in 4D 
FWI-based VMB. When the error in the initial model is 
substantial, separate inversions, either parallel or sequential, 
could converge to quite different local minima. On the other 
hand, our joint 4D FWI tries to explain both input data sets 
with a consistent/4D-friendly pair of baseline and monitor 
models. While this process effectively reduces the risk of 
converging into two very different local minima, the 
inversion could still fall into a common or similar local 
minimum that causes suboptimal 4D signals due to poor 
focusing and additional 4D noise due to migration artifacts. 
Therefore, joint 4D FWI needs to start from an initial model 
that is as good as possible since the 4D velocity difference is 
usually very small. 

Repeatability is a vital component in conventional 4D 
processing. Although our joint 4D FWI approach 
theoretically does not require perfect repeatability of the 
input data, we note that good repeatability is still key to its 
success since the 4D velocity difference is usually very 
small. While evolving technology and acquisition design 
continue to improve the repeatability of time-lapse data, 
flawless repeatability has yet to become a reality. Therefore, 

(a) (b)

(c) (d)

(e) (f)
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Joint 4D FWI 

4D-binning, which is commonly used in conventional 4D 
processing, is still recommended to enhance the repeatability 
of the input data to joint 4D FWI.  Furthermore, a carefully 
designed target-oriented regularization scheme has an 
important role in suppressing the 4D noise associated with 
residual non-repeatability.  
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Figure 3. (a) The common velocity model inverted by 3D FWI using both baseline and monitor data sets and (d) 4D migration difference using the 
same model in (a). Inverted (b) baseline and (c) monitor models from joint 4D FWI; (e) the 4D model difference of (c-b), and (f) the 4D image 
difference using respective joint 4D FWI models (b/c) to migrate baseline/monitor data. 

 
Figure 4. Gathers of monitor data beneath reservoir using (a) the common model from 3D FWI (Figure 3a) and (b) the monitor model from joint 
4D FWI (Figure 3c). 
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