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Summary 

 

We use the concepts of entropy and information theory to 
design a confidence measure for Bayesian facies 

estimations.  Bayesian analyses provide the probabilities of 

occurrence of each constituent facies in a set.  The entropy 

analysis uses all of these to establish a Confidence Index 
describing the reliability that the most-probable facies is in 

fact a clear best choice. 

 

We apply these ideas to various facies estimates from Gulf 
of Mexico inversions.  We demonstrate how entropy can be 

used to compare two different deterministic inversion 

workflows and measure the reliability of each. We also use 

the technique to QC the facies from simultaneous 
geostatistical inversion. Last, we demonstrate how 

Confidence Index templates can be used to predict the 

effectiveness of Bayesian facies estimation. 

 

Introduction 

 

Bayes’ rule maps prior probabilities to posterior 

probabilities, given new information. In our present 
context, the probabilities are those of a set of facies which 

can be present within the reservoir.  Prior information 

should generally be 3D in nature and can come from well 

logs or various geologic scenarios.  The new information 
comes from the results of seismic inversions or their 

derivatives.  

 

Facies can be described in elastic space using probability 

density functions (ePDFs) designed from elastic logs and 

rock physics models.  Bayes’ rule can then applied to the 

inversion results superimposed on those ePDFs. The 

process produces volumes of probabilities of occurrences 
of each of the facies in the set at all locations in 3D space 

(Pendrel et al., 2006).   

 

We follow Pendrel and Schouten (2019) to find a 
confidence measure that incorporates the complete set of 

facies probabilities. When a single facies has a probability 

close to unity and the other possible facies have small 

probabilities, our confidence is clear. But when the 
competing facies are larger or, in the extreme, all facies 

have equal probability, what is the effect on confidence?  

We use the ideas of entropy and information theory to 

design a Confidence Index which can measure the 
reliability of different regions in the reservoir or compare 

the results of two different Bayesian-based workflows. 

 

 

Method 

 

We follow the work of Caulfield et al., 2018 and utilize the 
definition of entropy described by Shannon (1948).  For a 

set of N facies with probabilities of occurrence, p i, the 

entropy is 

 
 

 

 

 
In the above equation, pi is the Bayesian probability of 

occurrence of the i-th facies in the set of N. 

When all the probabilities, pi, are equal, the entropy is a 

maximum.  Therefore, 
 

 

 

When one of the facies is dominant and has a probability 
close to 1, the entropy will be near minimum. This will be 

our situation of most interest.  We can create a confidence 

measure by computing a scaled negative entropy that takes 

on values in the range zero to unity. We refer to this 
measure as the Confidence Index (C.I.).   

 

 

 
The Confidence Index is zero when all the probabilities are 

equal and unity when the probability of a single facies is 1. 

The behaviour of entropy for a set of three facies 

probabilities is further demonstrated in Figure 1.  The green 

curve represents the case where p3 = 0 and p1 + p2 = 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Confidence Index (C.I.) is plotted vs facies probability,                

p1, for a three-facies system where p1, is allowed to vary for 

various relationships between p2 and p3   
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Entropy QC for Bayesian facies estimations 

Note the concave nature of the curve, indicating that it is 

quite sensitive to departures of the winning (highest) 
probability from unity.  The other curves show the effects 

of various other probability scenarios. In all cases, when 

the probabilities are increasingly distributed over more 

facies, the Confidence Index drops. 

 

Example 

 

We demonstrate the above ideas with a Gulf of Mexico 
data set. The key horizon is the top of the Green sand 

shown in Figure 2.  Sharp discontinuities are the results of 

faulting. Below the Green horizon, we recognize both 

upper and lower Green sandstones.  Geologically, there is a 
set of two vertically-stacked deltaic systems of middle 

Pliocene age. They average about 400 ft. in thickness and 

are separated by about 500 ft.  Within the play area are 

delta slope deformation, slump-induced turbidites, thin 
mouth-bed deposits but without the presence of any delta 

plain facies.   

 

The available seismic consisted of five partial-angle stacks 
with the maximum angle in the farthest stack being 50 

degrees This was not judged to be sufficient to resolve 

density with any degree of certainty. A single set of 

wavelets, one for each partial stack, was obtained by 
matching elastic synthetics to the seismic at each of the 

seven available wells. The log sets included full-wave sonic 

logs over the reservoir interval, facilitating the creation of 

the AVO wavelets. Three facies were identified: Shale, 
Silty, Pay.  

 

The results of the AVO inversion are shown in Figure 3 

with high-cut-filtered logs overlaid. The matches are not 
perfect since the inversion has no prior knowledge of the 

high frequency component of the logs. The region of 

interest is the sand below the black horizon marker where 

there is the possibility of hydrocarbon deposits.  Agreement 
with the logs is worse in the right of the figure. This is a 

low frequency effect due to pressure-induced spatial non-

stationarities in this band. 

 
The results of the Bayesian facies analysis are shown in 

Figure 4.  Well facies have been overlaid.  Agreement with 

the wells is generally good and the pay has been well 

defined. 
 

We compared the Confidence Index. for two different 

facies estimation workflows as described by Pendrel and 

Schouten, (2018).  The first was a Bayesian facies-first 
approach, the inputs for which were elastic impedances 

from post-stack inversions. The second procedure used the 

facies estimation created above and per-facies elastic trends 

from logs  to build  a low frequency  model  for input to a  
 

 

 
 

 

 

 
 

 

 

 
 
 

 

 

 

Figure 2: Project map with the upper sand horizon and well 

locations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: P Impedance (upper) and Vp/Vs (lower) from AVO 

Inversion. High-cut filtered logs have been overlaid (red arrows).  

The region of interest is just below the black marker. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The facies in this figure were determined by applying 

Bayesian analysis to the P Impedance and Vp/Vs from the AVO 

inversion. Well facies have been overlaid (pink arrows).  
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Entropy QC for Bayesian facies estimations 

simultaneous AVO inversion. Facies estimation was then 

done using the inversion outcomes. 
 

Figure 5 shows the Confidence Index corresponding to the 

facies probabilities for each workflow. The confidence in 

the second approach is significantly greater, demonstrating 
the usefulness of the formal inversion which includes a 

facies-driven low frequency input model.  The facies logs 

in the plot indicate that the facies-first approach was most 

successful in delineating Pay. This would be expected since 
the Pay facies show the most prominent anomalous features 

in elastic impedances. 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

Figure 5:  Confidence Index for the facies-first approach (upper) is 

compared to that for the facies derived from the AVO inversion 

(lower). Facies logs are overlaid. The AVO inversion method 

shows significantly larger confidence values. 

 
We have also applied the method to 40 realizations of 

geostatistical inversion. Each realization consisted of 

volumes of P Impedance, Vp/Vs and facies, all computed 

via a simultaneous algorithm.  From an analysis of the 
entire set of realizations, the probabilities of occurrence of 

each of the three facies were determined. From these, a 

Confidence Index was computed. The results are shown in 

Figure 6. The well tracks are readily identifiable, showing 
high confidence values since they were part of the prior 

information.  Away from the wells, the Confidence Index is 

reduced in regions of facies transitions.  These are regions 

where two facies show more equal probabilities and could 
be indicative of the presence of a hybrid facies. 
 

 

 

 

 

 
 

 

 

 
          

 

 

 

 

 

 

 

 

 

 

Figure 6:  Confidence Index corresponding to facies probabilities 

from 40 realizations of geostatistical inversion (upper). In the 

bottom panel are the corresponding facies.  Confidence is reduced 

in regions of facies transitions. 
 

Finally we demonstrate how the notion of Confidence 
Index can be utilized in the facies design process and the 

construction of the ePDFs.  Figure 7 shows a proposed 

ePDF design in P Impedance – Vp/Vs space.  The first two 

standard deviations of the proposed ePDFs are shown.  The 
color background is the Confidence Index at each 

coordinate in the ePDF design space, derived from the 

proposed PDFs. When facies overlap strongly, the 

Confidence Index is reduced.   It also indicates zero by 
definition when a point in cross-plot space exceeds a 

maximum distance threshold from all the PDF means.  This 

is meant to exclude outliers and bad data points. The 

excluded locations can be mapped and have proved to be 
useful in identifying new, unforeseen facies. Note that 

confidence in the intermediate Silty facies is reduced due to 

its proximity with Shale and Pay.   

 
We estimate uncertainty in P Impedance and Vp/Vs from 

inversion by comparing high-cut-filtered logs to inversion 

outcomes at the well locations. These can then be formally 

included in the Bayesian facies analysis. Their effect is to 
reduce facies probabilities, making the probabilities of 

competing facies more similar. The predictable and desired 

effect on C.I. is a reduction of confidence. Figure 8 shows 

the effects of including an uncertainty on the Confidence 
Index. When uncertainty is accounted for, confidence in the 

overlapping facies regions deteriorates remarkably.   
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Figure 7:  Confidence Index maps corresponding to the proposed 

elastic PDFs (black) are used to guide the PDF design. There has 

been no assumed uncertainty in the input inversions.  

 

 

Conclusions 

 
We have showed how a Confidence Index based on the 

concepts of entropy and information theory can be used in 

various situations to gauge the reliability of Bayesian-

derived facies.  The method incorporates the probabilities 
of all the possible facies in a set and provides guidance in 

judging confidence. We applied the technique to 

determining the confidence in different inversion 

workflows and also showed how it could be used to QC the 
facies from simultaneous geostatistical inversions. Another 

application to facies PDF design was also demonstrated. 
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Figure 8:  Confidence Index maps corresponding to the proposed 

elastic PDFs (black). An inversion uncertainty has been included. 
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