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Summary 

 

Unconventional reservoirs cannot be characterized by 

relying on the juxtaposition of single-attribute analysis.  To 
understand their complexity, many correlated static and 

dynamic reservoir properties need to be carefully and 

quantitatively analyzed as part of integrated 

multidisciplinary studies. The goal of quantitative 

interpretation is to predict reservoir properties away from 
control points in order to improve vertical and lateral well 

placement to maximize stimulated reservoir volume (SRV) 

and productivity. The dense lateral spacing of three-

dimensional (3D) seismic lends itself to estimating 

reservoir properties in 3D. Therefore, prediction of elastic 
attributes from seismic amplitude away from wells is 

common practice. However, transforming these elastic 

properties into geomechanical and other reservoir 

properties requires integration of multiple data sets (e.g., 

wireline logs, core, and cuttings) at various scales. 
Integration of all of this information is essential for de-

risking seismic amplitude-supported interpretations. This 

study demonstrates this approach and the methods used to 

help predict geomechanical properties in 3D space, away 

from well control. The computed geomechanical volumes 
(pore pressure (Pp), fracture pressure (Fp), and minimum 

horizontal stress (SHmin)) were used to pick intermediate 

casing points (IPCs) and to predict recommended 

maximum and minimum mud weights, both of which 

provided significant capital savings in casing design and/or 
lost bottom hole assemblies (BHAs). 

 

Introduction 

 

Prospectivity of unconventional reservoirs is governed by a 
complex set of dynamic and static reservoir properties, and 

therefore requires a multidisciplinary approach to reach an 

adequate understanding of key subsurface variations. One 

such integrated technique is quantitative interpretation (QI), 

which, as the name implies, is used to quantify various 
reservoir parameters, including elastic, mineralogical, 

lithological, geochemical, geomechanical, and anisotropic 

properties over a 2D line or 3D volume.  

 

This study utilizes multiclient PSTM gathers acquired in 
Martin County, Texas for inversion. A new workflow, 

based on rock physics, statistics, and empirical methods, 

integrates mineralogical, geochemical, geomechanical, and  

petrophysical properties in order to reconcile sampling 

differences among data sets. Initial analysis is one-

dimensional (1D), focused on data-rich control at wells, 

and is then extended to 3D using seismic data in order to 

delineate targeted reservoirs, as depicted in Figure 1. 

 

 

Figure 1: Schematic diagram of integrated workflow 

 

Method 

 
1D Analysis 

 

The primary objective of the 1D analysis was to generate 

high-quality elastic, petrophysical, geomechanical, and 

geochemical properties at control wells, and then use these 
parameters to calibrate and validate corresponding 3D 

seismic-derived attributes.  

 

The first step in 1D analysis was to apply a rigorous check 

to identify poor-quality data. Missing or erroneous elastic 
logs (namely P-sonic, S-sonic, and density) were ultimately 

replaced with rock physics analogs. Petrophysical 

properties, such as porosity, saturation, and mineral 

volumes, were estimated prior to this step and calibrated 

with sample analysis from drill cuttings or cores using 
SEM-EDS technology. Next, formation Pp was estimated 

using modified assumptions of Eaton’s method (1976) 

(e.g., P-velocity (Vp) slower than a local trend associated 

with hydrostatic pressure is an indication of overpressure). 

Estimated Pp was calibrated with known values measured 
during well tests (Figure 2). This method accounts for 

significant lithology and porosity variation in 

unconventional mudrocks and corrects for these effects 

when estimating deviation (ΔVp) from the normal pressure 

trend (Yale et al., 2018). The modified Eaton-Yale 
lithology-porosity workflow comprises Voigt-Reuss-Hill 

(VRH) and Vp-modulus rock physics models, which are 

used to correct in-situ Vp for lithology variation. The 
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Seismic-driven fracture pressure 

lithology-correction workflow generates a Biot’s 

coefficient effective stress parameter in each well. The 

porosity correction applied to in-situ Vp is calculated using 
the critical porosity method (Mavko et al., 1991), where the 

Vp modulus and porosity are related as follows:  

 

𝑉𝑝𝑚𝑜𝑑 = 𝑉𝑝𝑚𝑜𝑑−𝑉𝑅𝐻 ∗ (1− /𝑐)  ,                    (1) 

 

where c is the critical porosity and Vp mod-VRH is the 

average Vp modulus of all minerals at the target depth 

using the VRH model. After correcting measured Vp for 
porosity and lithology and computing Biot’s coefficient, Pp 

is computed as follows: 

 

𝑃𝑝 = 𝑂𝐵𝑃−(𝑂𝐵𝑃 −𝛼𝑃ℎ𝑦𝑑 ) ∗𝐶 ∗ (
𝑉𝑝−𝑚𝑒𝑎𝑠−𝑝𝑜𝑟𝑜𝑐𝑜𝑟𝑟

𝑉𝑝−𝑁𝑃𝑇−𝑙𝑖𝑡ℎ𝑐𝑜𝑟𝑟

)
𝐸𝐸

/𝛼,   (2)               

 

where OBP is overburden pressure, Phyd is hydrostatic 

pressure, and Vp-meas-porocorr is the porosity corrected 

measured Vp.  Vp-NPT-lithcorr is the lithology corrected Vp-
NPT curve fit, where NPT is the normal pressure trend and 

 is Biot’s coefficient. In Equation 2, C is a calibration 

factor and EE is the Eaton exponent.  

 

Estimated Pp was calibrated using data from DFITs, DSTs, 

shut-ins, and mud-weights (MW). The EE and NPT 

calibration factors were adjusted during the workflow to 
match measured Pp values. 

 

Dynamic anisotropic geomechanical properties, including 

Young’s modulus and Poisson’s ratio, were estimated using 

cross-dipole logs, lithology logs, porosity, water saturation, 
bulk density, and calibrated Pp. They were transformed into 

static properties using empirical models based on core 

measurements, and were then used to predict in-situ 

stresses, assuming HTI media (Figure 2). In-situ stress was 

based on the Eaton-Schoenberg equation, in which 
overburden stress is found by mathematical integration of 

bulk density logs (Schoenberg, 1980).  Image logs were 

used in the workflow to discriminate natural fractures from 

drilling-induced fractures, and drilling reports were used to 

estimate effective circulating density (ECD). ECD 
establishes lower limits of in-situ stress for drilling-induced 

fractures. Tectonic strain/stress was also adjusted during 

the calibration process to match known stress profiles 

calculated from Fp recorded from well tests (Figure 2).  

 
 

Figure 2: (a) Geomechanical properties-Young’s modulus, Poisson’s ratio and Biot’s coefficient – calibrated to laboratory measurements, (b) Pp, 
horizontal and vertical stresses – calibrated to DFITs and (c) Pp and stress gradients.
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Seismic-driven fracture pressure 

3D Analysis 

 

Following the methods applied to the 1D model, reservoir 
properties, including Pp and in-situ stresses, were predicted 

in 3D. Seismic was used to estimate reservoir properties 

(elastic, petrophysical, anisotropic, and geomechanical 

attributes) via seismic inversion and artificial neural 

network (ANN) algorithms. During the process, well data 
was used to cross-check, calibrate, and verify isotropic and 

anisotropic inversion results. A sparse-spike, isotropic 

seismic inversion (Debeye and Riel, 1990) was performed 

to estimate P-impedance, S-impedance, and Vp/Vs in the 

reservoir space (Figure 3). Accurate density was not 
obtained from this inversion due to coverage angle 

limitations, even though it is required in calculations of 

overburden stress, effective vertical stress, and Young’s 

modulus.  Density, therefore, was estimated in 3D from 

inversion products and other seismic attributes using ANN.  
Porosity, saturation, and mineralogy (e.g., quartz volume) 

were also estimated in this manner (Winter et al., 2018). 

Using static/dynamic relationships from the 1D model, 

static Young’s modulus and Poison’s ratio were estimated 

from the corresponding dynamic volumes. Isotropic 
inversion results, together with 1D Pp analysis, were used 

to compute the 3D Pp volume. Biot’s coefficient was 

obtained by extrapolating well data, while inverted Vp was 

corrected for lithology and porosity. These corrections 

transformed inverted Vp into two volumes: [Vp-inv-
porocorr] and [Vp-NPT-lithocorr]. The EE and NPT 

calibration factors, obtained in the 1D analysis were then 

applied to calibrate the 3D volume. 

 

Prediction of reservoir anisotropic parameters was achieved 
by integrating full-azimuth seismic data and an anisotropic 

1D mechanical earth model (MEM) through anisotropic 

inversion (Bakulin et al., 2000; Downtown and Roure, 

2010; Zhang and Mesdag, 2016). Magnitude of anisotropy 

(Figure 4) and orientation were found first, then cross-
checked at well locations against the anisotropic 1D model 

and image logs.  

 

Linear slip deformation (LSD) theory (Schoenberg and 

Sayers, 1995) was applied to constrain the anisotropic 
solution-space and to estimate fracture parameters (i.e., 

normal and tangential weaknesses, calibrated with the 1D 

model at well locations). Next, the two principal horizontal 

stress components were calculated in 3D as functions of 

static Young’s modulus and Poisson’s ratio (from isotropic 
inversion), and normal compliances (from anisotropic 

inversion; Gray el al., 2012). Effective stresses from Gray 

et al. (2012) were modified to yield total stresses by 

introducing Biot’s effective stress term and Pp.  Finally, Fp 

was estimated.  The resulting 3D Fp volume was then 

calibrated against the 1D model obtained during the 1D 

analysis (Figure 5).  

 

 
Figure 3: Inverted P-impedance (top), S-impedance (middle), and 

Vp/Vs (bottom) overlaid with corresponding elastic attributes 
computed from wireline logs. Blue colors indicate low values and 
gold colors show high attribute values. 

 

 
Figure 4: Inverted magnitude of anisotropy (from anisotropic 

inversion) around four key wells overlaid with magnitude of 
anisotropy from well data. Arrows show the locations of wells. 
Blue colors indicate low anisotropy and red colors indicate high 
anisotropy. 

 
Application 

 

ICPs protect against borehole caving and enable the use of 

drilling muds with variable density (mud weight) necessary 

for wellbore stability. Higher mud weight is required to 
control high pressure, while weak formations must be 

protected to prevent lost circulation or stuck pipe. Hence, 

setting the ICPs correctly is paramount to selecting the 

optimal mud weight for safe drilling.  Figure 5 exhibits a 

3D display of the Fp volume and wellbores.  Two wells 
sustained a failure at the casing shoe, leading to loss of the 

BHAs. The ICPs in these wells precluded the use of heavy 

mud during subsequent drilling because they were placed in 

formations with low Fp. These ICPs were picked prior
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Seismic-driven fracture pressure 
 

 to the delivery of seismic-derived Fp. Figure 6 shows a crossplot 

between seismic-predicted SHmin versus mud weight in SHmin 
equivalent (r

2
 = 0.74). Post-mortem analysis of the failed wells 

suggests Fp was correctly estimated (close to the 1:1 line) by 
seismic. Nonetheless, the ICPs could have been picked in zones 

with higher Fp to allow for heavier mud. 

Figure 5: Fp volume co-rendering fault likelihood attributes. Purple color indicates lower values of Fp while the red, yellow, and white indicate 

large values of Fp. Marker tops and ICPs are displayed along the wellbores. Red arrows indicate wells with lost BHA.  

 

Following delivery of inversion products, the operations 

geologist consulted the Fp volume to select ICPs in new 
wells (I-L; Figure 5), resulting in better well design and 

less downtime from drilling issues. 

 

Conclusions 

 
Integration of data from multiple sources enabled rock and 

reservoir property mapping of subsurface variations 

vertically and laterally away from well control. Integrated 

analysis increased the accuracy, detail, coverage, and 

overall value of the results. Geomechanical parameters 
generated from elastic properties and in-situ stress analysis 

led to better understanding of drilling, completion, and 

stimulation designs. In this case, Pp and Fp were used to 

successfully pick ICPs ahead of the drill bit, leading to 

more efficient drilling and significant capital savings 
through reduction of lost BHAs.  
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Figure 6: Seismic-derived SHmin versus SHmin derived from MW 
used during drilling. The two wells plotted in red were drilled prior 

to the delivery of the seismic-derived SHmin and sustained shoe 
failure. 
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