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Summary 
 
We discuss the advantages of multidimensional (in data space) optimal transport (OT) full waveform inversion 
(FWI). We show that a careful formulation leads to an enhanced coherency of the event continuity in the move-out 
direction and to an improved velocity update compared to the conventional, least squares based, cost function and 
also compared to the monodimensional (in data space) OT FWI. This is illustrated on both marine and land field 
datasets. 
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Introduction 
 

Conventional full waveform inversion (FWI) is based on a least squares (LSQ) misfit function, which 
has proven to be effective for high-resolution velocity model building. However, LSQ FWI is plagued 
by local minima (due to cycle skipping), so that the local optimization process requires starting from a 
good initial model and, additionally, careful data processing is often required for successful field data 
applications. Many alternative misfit functions have been proposed to mitigate those issues. The 
common idea is to emphasize the kinematic information contained in the data, and to relieve sensitivity 
to the amplitude information. Among those, misfits based on the optimal transport (OT) theory, recently 
aroused attention in geophysics. OT FWI has the potential to reduce the local minima issue (Engquist 
et al., 2014). Encouraging results were obtained by Métivier et al. (2016a), Yang et al. (2018) and 
Poncet et al. (2018). In practice, OT implementation in FWI only modifies the back-propagated adjoint-
source that can be viewed as the result of smart preprocessing of the LSQ residual, enhancing event 
coherency and low frequencies, thus the kinematic information (Métivier et al., 2016a; Yang et al., 
2018; Poncet et al., 2018). 
 

An unusual property of OT misfits is that they can be multi-dimensional in the data space (denoted by 
multiD in the following, not to be confused with the dimensionality of the velocity model). This means 
they can account for correlations between data samples in the time and receiver directions, which should 
result in an enhancement of the coherency of the events. In contrast, LSQ FWI is 0D in data space, 
meaning it considers each data sample independently and locally. Intermediately, 1D OT FWI accounts 
for correlations between data samples in the time direction but not in the receiver direction. The 
advantages of the multiD OT formulation are still to be further investigated: Yang et al. (2018) and 
Métivier et al. (2016a) investigated multiD OT v.s. 1D OT FWI, but their tests on synthetic data led to 
somewhat limited conclusions.  
 

In this article, we demonstrate on field data the interest of multiD OT FWI. We show that a careful 
formulation leads to an increased event coherency along the move-out direction compared to 1D OT 
and LSQ FWI, producing an improved structural consistency in velocity updates. We illustrate how our 
implementation leads to better FWI results on both marine and land field datasets. 
 

OT FWI implementations and multiD aspects 
 

For each shot, we denote by 푑 (풙) the observed data and 푑[풎](풙) the data modelled using a 
subsurface model 풎. The data space 푿 is parameterized by the time and receiver positions. For a misfit 
measurement ∑ 퐽(푑 ,푑[풎]), the data-space gradient 훿퐽/훿푑[풎] defines the adjoint-source, 
translated into the velocity-space gradient via the adjoint-state method. 푐 (풙,풚) = ‖풙 − 풚‖  denotes 
the Lp distance between vectors in the 푿 space. The LSQ misfit and data-space gradient are 

 퐽 (푑 ,푑[풎] )  =  
1
2
푐 (푑 ,푑[풎])         and        

훿 퐽
훿푑[풎] 

=  ∆푑[풎]                         (1)  

where ∆푑[풎] = 푑 (풙)− 푑[풎] denotes the data residual.  
 

There exist various formulations of OT applied to FWI, all related to Wasserstein distances. The p-
Wasserstein distance for two probability densities 푑  and 푑  in the data space is 

퐽 (푑 ,푑  ) = min푻 푐 (풙,푻(풙))푑 (풙)푑풙
푿

     s. t.     푻 ∈ 푚푎푝푠 푡ℎ푎푡 푟푒푎푟푟푎푛푔푒 푑  푖푛푡표 푑     (2)  

where s.t. denotes “subject to constraint”. Eq. (2) seeks the minimum cost to transport mass from 푑  to 
푑 , from the cost 푐   point of view. An important aspect is that it requires positive 푑  and 푑  with equal 
masses, so that it cannot be readily applied to seismic data. To overcome this limitation, Yang et al. 
(2018) and Qiu et al. (2017) proposed positive transformations of the observed and modelled data 
followed by rescaling to the same mass. They chose the p=2 case, i.e. the squared 2-Wasserstein 
distance related to the LSQ cost 푐 . Since solving eq. (2) in the multiD data space is computationally 
demanding, most of their applications consider a 1D data space, i.e. 푿 is parameterized in time only 
with eq. (2) solved for each trace independently.  
 

Métivier et al. (2016a) started from the 1-Wasserstein distance, i.e. p=1 in eq. (2) reformulated as a dual 
problem, that becomes linear. Then adding a bounding constraint allows for the use of the seismic data 
directly. This leads to the so-called Kantorovich-Rubinstein (KR) distance: 
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퐽 (푑 ,푑[풎]) = max 휑(풙)∆푑[풎](풙)푑풙
푿

  s. t.  |휑(풙) − 휑(풚)| ≤ 푐 (풙,풚)  &  |휑(풙)| ≤ 퐾   (3)  

휑 is the solution of the dual problem (3) and represents the adjoint-source that must be back-propagated 
within KR FWI (Métivier et al., 2016a). The first constraint on 휑 is called 1-Lipschitz for the metric 푐 . 
It imposes that changes in 휑 are sufficiently slow with respect to 푐 , which  emphasizes low frequencies 
in 휑. This constraint can be reformulated as a local constraint, which leads to a computationally tractable 
scheme to iteratively solve the discretized eq. (3) even in the multiD case, using the Simultaneous 
Descent Method of Multipliers (SDMM) method (Métivier et al., 2016b).  
 

We have implemented multiD KR FWI considering the time dimension and a chosen receiver “line” 
dimension (for instance the inline direction in the marine case). We iteratively re-solve eq. (3) for each 
line in the chosen receiver-direction with 풙 = (푡풙, 푟풙 ) . We pointed out in Poncet et al. (2018) that 
this approach defines a hybrid misfit mixing to a desired level OT with conventional misfits (namely 
L1 and LSQ). We believe this flexibility and the fact that there is a controllable continuum between 
those misfits is a strong point, see Poncet et al. (2018). In addition, we have greatly optimized our 
algorithm. The maximum number of SDMM inner iterations to solve the discretized eq. (3) is less than 
N=30 (like in Métivier et al., 2016b) with a dedicated parallelization. 
 

Parameterization of the multiD metric for an increased continuity in the move-out direction 
 

As in the multiD case, 풙 mixes different physical units, the 푐  metric that appears in the 1-Lipschitz 
constraint of eq. (3) must be a generalized L1 distance, parameterized in a so called “Mahalanobis”-like 
fashion with a covariance in the data space. In our applications, we noticed that accounting for the 
diagonal part of the covariance is sufficient 

푐 (풙,풚) =
1

휎
푣 푡풙 − 푡풚 + 푟풙 − 푟풚  

where 휎  represents a variance in the chosen receiver-direction (distance) and 휎  = 푣/휎  represents 
a variance in the time direction. 푣 is a velocity that must be parameterized to characterize the average 
direction along which most 
correlations between traces occur, i.e. 
the average move-out direction. A 
good choice of 푣 is crucial for the 
success of multiD KR (and certainly 
of multiD OT in general). 
 

For marine field data (with a mute), 
Fig. 1 compares a LSQ adjoint-
source (or residual) and the 
corresponding 1D and multiD KR 
adjoint-sources. The noise in the data 
is different from one trace to the 
other, degrading the continuity of 
LSQ and 1D KR adjoint-sources. 
This lack of continuity affects the 
velocity updates. In contrast, multiD 
KR is able to denoise the adjoint-
source, and to increase its coherency 
in the move-out direction and balance its amplitudes.  
 

Application to field datasets  
 

We used N≤30 inner iterations for each KR problem and a preconditioned L-BFGS optimization scheme 
for the FWI velocity optimization process.We first present FWI results on a land broadband full azimuth 
dataset consisting in three separate acquisitions that have been merged, with challenges associated to 
irregularities for offset distributions among the merged surveys. Fig. 2 compares a LSQ adjoint-source 
and the corresponding multiD KR adjoint-source. We see that the multiD KR improves the amplitude 
balancing and coherency in the move-out direction. As careful denoising of the data has been performed 

Figure 1: Real data (3D marine) adjoint-sources at 4 Hz. LSQ 
FWI (left), 1D KR FWI (middle) and multiD KR FWI (right). 
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here before FWI, the 1D KR adjoint-source is quite similar to the multiD KR one. But multiD KR 
nevertheless leads to an improved velocity inversion result as illustrated in Fig. 3, with better structural 
consistency and well matching. Fig.4 shows that multiD KR FWI gives better alignment to sonic logs 
at the location of the well and better consistency with the geology compared to LSQ FWI. This can be 
related to a reduced sensitivity to cycle skipping (Sedova et al., 2018). Note that 1D KR FWI also 

performs better than LSQ FWI (but less well than MultiD KR FWI as already illustrated). 
 

We finally discuss a marine field data result. Fig. 5 shows that LSQ FWI is cycle-skipped: the indicated 
“red spots” in the observed data overlaid on top of the modelled data are due to a sudden jump of cycles 
in the modelled data. This results in a lack of structural consistency and continuity in the inverted 
velocity. Fig. 5 shows how multiD KR FWI solves for those issues and inverts for an improved velocity. 
 

Conclusions 
 

We demonstrated on field datasets the interest of KR FWI and we discussed the advantages of the 
multiD (in data space) formulation. We showed that a careful formulation leads to an enhancement of 
the coherency of the events continuity in the move-out direction and to an improved velocity update 

Figure 2: Real data (3D land) adjoint-sources 
at 5 Hz. LSQ FWI (left), multiD KR FWI (right). 

Figure 4: Results of velocity model building using LSQ FWI (left) and multiD KR FWI (right) at 9 Hz. 
Three images are presented for each case: the velocity model, the velocity profile and sonic log at the 
well location, and the migrated stack.  

Figure 3: Benefit of multiD KR FWI (right) compared 
to 1D KR FWI (left), at 9 Hz.  
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compared to LSQ, that has been illustrated on marine field dataset, but also to 1D KR FWI, that has 
been illustrated on land field dataset. 
 

For completeness, we mention that Métivier et al. (2018) very recently proposed to use a graph 
transform of the data within KR FWI to further reduce sensibility to cycle skipping. Because this 
transform increases the dimensionality of the data space, they proposed to implement it trace-by-trace 
in KR FWI to keep a reasonable computational cost, leading to a 1D scheme from the original data 
space point of view. An alternative would be to exploit the denoising power of multiD KR (without 
data transformation) to start FWI at a lower frequency, also leading to an even more reduced sensibility 
to cycle skipping.  
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