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Summary 

 

We investigate the benefits of improving the quantitative 
estimation of reflectivity in reflection FWI (RFWI). This is 
an important step of the inversion process, since it not only 
affects the generation of the synthetic reflection data, but 
also the generation of the “rabbit ears” along the reflection 
wavepaths. In our approach, the quantitative estimation of 
reflectivity is performed using least-squares reverse time 
migration (LSRTM), where the Hessian matrix and its 
inverse are estimated in the curvelet domain. Using 
synthetic and field data sets, we show how this approach 
can improve the reflectivity model and, therefore, benefit 
the RFWI velocity update. Finally, we discuss some of the 
limitations of this approach and some of the challenges that 
are not addressed by it. 
 
Introduction 

 
Reflection FWI (RFWI), firstly introduced by Chavent et 
al. (1994) and Clément et al. (2001), and reintroduced in its 
current form by Xu et al. (2012), has recently regained 
traction as a promising technology to retrieve low-
wavenumber updates of velocity models using reflection 
data. Despite being presented in different forms, reflection 
FWI typically assumes the model 𝑚 can be separated into a 
long-wavelength (or background) component 𝑚0 and a 
short-wavelength (or perturbation) component 𝛿𝑚, such 
that: 
 

𝑚 = 𝑚0 + 𝛿𝑚.                              (1) 
 
The goal of RFWI is then to update the background model 
𝑚0 in order to minimize the difference between the 
observed and synthetic reflection data. In general, this is 
achieved by iterating over the following steps: 
 
1. Estimate the short-wavelength part of the model, or 
“model perturbation” 𝛿𝑚, using the current background 
model 𝑚0. 
2. Generate synthetic reflection data using 𝑚0 and 𝛿𝑚. 
3. Measure a residual between the input and synthetic 
reflection data. 
4. Back-propagate the residual into the current model to 
obtain the velocity update along the reflection wavepaths, 
the so-called rabbit ears. 

 
The first step of this process, estimating 𝛿𝑚, is of great 
importance, since it affects not only the generation of the 
synthetic reflection data but also the generation of the 
rabbit ears along the reflection wavepaths. A variety of 
methods have recently been proposed to utilize this short-

wavelength component in RFWI, e.g., using 𝛿𝑚 to update 
the density model (Gomes and Chazalnoel, 2017), the 
impedance model (Zhou et al., 2018), or adding (and later 
removing) the short-wavelength component directly into 
the velocity model (Irabor and Warner, 2016). 
 
Alternatively, 𝛿𝑚 can be introduced as a reflectivity model 
(Xu et al., 2012; Alkhalifah and Wu, 2016; Vigh et al., 
2016), in which case demigration has to be used to model 
the synthetic reflection data. One of the advantages of this 
approach is that it facilitates separation between the high-
wavenumber and low-wavenumber components of the FWI 
gradient. In this scenario, the first step effectively becomes 
a least-squares reverse time migration (LSRTM) problem, 
i.e., 
 

𝛿𝑚 = (𝐿𝑇𝐿)−1𝐿𝑇𝑑,                             (2) 
 
where 𝐿 represents the Born modeling operator, 
𝐿𝑇represents its adjoint, the migration operator, and 𝑑 
represents the recorded data. Equation 2 can be solved 
iteratively using local optimization methods such as 
steepest-descent or conjugate gradient (Nemeth et al., 
1999). However, in the RFWI context, due to the 
computational cost involved, the LSRTM in the first step is 
normally reduced to a simple RTM, i.e., 𝛿𝑚 ≈ 𝐿𝑇𝑑, with 
the Hessian matrix  (𝐿𝑇𝐿)−1 sometimes replaced with 
diagonal approximations (Chavent et al., 1994). 
 
Ignoring the effect of the Hessian matrix in Equation 2 
exposes the RFWI reflectivity 𝛿𝑚 to limitations of the 
migration operator and the acquisition geometry, which 
consequently affects the amplitude of the synthetic data 
𝐿𝛿𝑚, as well as the balance between the contribution from 
different rabbit ears. To address these issues, previous 
approaches rely on schemes such as data matching and 
automatic gain control, or using kinematic-based objective 
functions that naturally include amplitude normalization 
terms (Ma and Hale, 2013; Luo et al., 2016). However, 
these methods can be prone to overboosting weak noise and 
either arbitrarily address, e.g., by automatic gain control, or 
do not address the issues of 𝛿𝑚 that will be later used to 
generate the rabbit ears. 
 
We first investigate, using a synthetic data set, the effects 
of relying on RTM instead of LSRTM to calculate the 
RFWI reflectivity. In addition, a more efficient approach 
using single-iteration LSRTM, more specifically, using 
curvelet-domain Hessian filters (CHF) (Wang et al., 2016), 
is proposed and validated with field data results. 
 

 

10.1190/segam2018-2996291.1
Page    1248

© 2018 SEG
SEG International Exposition and 88th annual Meeting

D
ow

nl
oa

de
d 

10
/2

5/
18

 to
 1

92
.1

59
.1

06
.2

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Improving RFWI with LSRTM 

Effect of LSRTM in RFWI 

We first used the model shown in Figure 1 to illustrate the 
effect of performing LSRTM for the RFWI reflectivity 
calculation. It consisted of a velocity model (Figure 1a) 
based on the Chevron 2014 benchmark model (Metivier et 
al., 2016) and a density model (Figure 1b) formed by a 
series of parallel layers. 

(a) 

(b) 
Figure 1: True models: (a) velocity model and (b) density model. 

A ghost-free data set with maximum offset of 8 km was 
then generated using forward modeling. The initial model 
used for RFWI was the 1D model shown in Figure 2a. The 
velocity error correspondent to this model is shown in 
Figure 2b. The main challenge for RFWI in this case is to 
retrieve the low velocity zone below 3 km, which is beyond 
the diving wave penetration depth for the offsets available. 

(a) 

(b) 
Figure 2: (a) Initial velocity model and (b) velocity error. 

Next, we compared RFWI results using RTM and LSRTM 
to calculate the reflectivity model. In the RTM case, an 
amplitude match between synthetic data 𝐿𝛿𝑚 and input 
data 𝑑 was applied prior to the residual calculation to 
minimize the error produced by ignoring the Hessian 
matrix. In addition, a diagonal approximation of the 
Hessian was applied to compensate for source-side 
illumination. However, in the LSRTM case, those steps 
were not necessary since the LSRTM itself will compensate 
for the Hessian effects and produce more accurate 
amplitudes. 

Figures 3a and 3b show the reflectivity models obtained in 
the first RFWI iteration, using RTM and LSRTM, 
respectively, as described above. The maximum frequency 
in this case was 3 Hz. Although the diagonal approximation 
applied to the RTM was able to produce relatively balanced 
amplitudes, it still did not fully compensate for the Hessian 
effects, as can be noted by comparing it to the LSRTM 
result (Figure 3b). 

(a)

(b)
Figure 3: 3 Hz RFWI reflectivity model using: (a) compensated 
RTM and (b) LSRTM. 

We then applied RFWI starting from the initial model 
shown in Figure 2a and a fixed constant density model. The 
transmitted wave data were muted prior to the inversion. A
total of 35 RFWI iterations were performed from 3 Hz to 6 
Hz, with each iteration requiring the recalculation of 𝛿𝑚
using the current background model. Figures 4a and 4b
show the RFWI result using RTM and LSRTM, 
respectively, to calculate the reflectivity model at each 
iteration. Compared to the true velocity error (Figure 2b), it 
is clear that the LSRTM-based RFWI result (Figure 4b) is 
able to invert the main features of the model, with the 
perturbation distribution resembling the true result. In 
contrast, the RTM-based RFWI (Figure 4a) suffers from 
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Improving RFWI with LSRTM 

localized artifacts, as indicated by the arrows, resulting 
from the accumulated effects of neglecting the Hessian 
matrix. 

(a) 

(b) 
Figure 4: RFWI results starting from initial model shown in 
Figure 2a: (a) using RTM to calculate the reflectivity and (b) using 
LSRTM to calculate the reflectivity.  

The results in Figure 4 show the benefits of using a more 
accurate method to calculate the RFWI reflectivity model. 
Nevertheless, the cost of using LSRTM at every iteration 
cannot be overlooked for large 3D data sets. Therefore, a 
more efficient compromise needs to be considered for 
realistic applications. 

Single-iteration LSRTM 

One way to improve the RFWI reflectivity model without 
dramatically increasing its cost is by using so-called single-
iteration LSRTM methods, which aim to fully compensate 
for the Hessian effects while requiring at most two 
migrations. Many different ideas have been proposed to
achieve this goal, e.g., the approximate inverse Born 
modeling operator (Hou and Symes, 2014), point-spread 
function deconvolution (Fletcher et al., 2016), and non-
linear Hessian filters (Guitton, 2004). 

Recently, Wang et al. (2016) proposed to compute the non-
linear Hessian filters in the curvelet domain by minimizing 
the objective function 𝑓: 

𝑓(𝑠) = ‖𝐶[𝐿𝑇𝑑] − 𝑠𝐶[(𝐿𝑇𝐿)𝐿𝑇𝑑]‖2 + 𝜖‖𝑠‖2,       (3), 

where 𝑠 represents the curvelet-domain Hessian filters 
(CHF), 𝐶 represents the curvelet transform, and 𝜖 is a 
weight factor for the normalization term. In the context of 
RFWI, the reflectivity can then be determined by: 

𝛿𝑚 ≈ 𝐶−1[|𝑠|𝐶[𝐿𝑇𝑑]],                      (4), 

where 𝐶−1 denotes the inverse curvelet transform. This 
approach has been shown to compensate for the Hessian 
effects while preventing the boosting of noise in poor 
signal-to-noise ratio (S/N) areas of the reflectivity, due to 
the sparseness introduced by the curvelet transform. 
  
We propose to use Equation 4 to calculate the RFWI 
reflectivity instead of the more costly iterative LSRTM. In 
the next section, we show the results of this method applied 
to a field data example. 

Field data example 

The data used for this test are from a deep-water survey 
over the Perdido fold belt, in the Mexican side of the Gulf 
of Mexico (GoM). The seismic data were acquired using a
flat-cable wide-azimuth (WAZ) acquisition configuration
with maximum offset of 8.1 km along the cables and 4.2 
km across the cables.
  
We first evaluated the impact of the improved reflectivity 
model in the synthetic reflection data generated during 
RFWI. Figures 5a, 5b, and 5c show, respectively, the 4 Hz
reflectivity obtained with RTM, iterative LSRTM, and 
single-iteration LSRTM for the first RFWI iteration. 
Figures 5d, 5e, and 5f show the synthetic reflection data 
sets obtained by demigration using the respective 
reflectivity models. It is noticed that later arrivals have 
improved S/N in Figures 5e and 5f, as a result of the 
improved amplitudes of deep reflectors observed in Figures 
5b and 5c. It is also observed that the single-iteration 
LSRTM was able to achieve a comparable result at a 
fraction of the iterative LSRTM cost. 

Figure 5: Reflectivity model obtained using: (a) RTM, (b) iterative 
LSRTM, and (c) single-iteration LSRTM (CHF); and synthetic 
reflection data: (d), (e), and (f) obtained by demigration using (a), 
(b), and (c), respectively. 
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Improving RFWI with LSRTM 

We then performed 10 iterations of RFWI using a 
maximum frequency of 4 Hz. As reference, the migrated 
image using the initial model is presented in Figure 6a, 
which shows strong discontinuity of the deep events due to 
velocity errors in the overburden. Figure 6b shows the same 
section, but migrated with the final RFWI model using 
RTM to obtain the reflectivity. Although improvements can 
be observed in many locations, there are still some 
discontinuities in the Wilcox and Cretaceous formations, as 
indicated by the arrows. Finally, Figure 6c shows the image 
migrated with the RFWI model using single-iteration 
LSRTM for reflectivity. It is clear that the improved 
reflectivity model had a positive impact on the inverted 
velocities, resulting in more focused and continuous events.

Discussion and limitations 

Although compensating for the Hessian effects in the 
RFWI reflectivity model has clear benefits, there are still 
limitations that must be discussed.  

First of all, the single-iteration LSRTM methods normally 
rely on a windowed matching process, assuming a smooth 
transition of the illumination problem, which is not always 
the case. One possible alternative is to use the matching 
filters to pre-condition the iterative LSRTM, as proposed 
by Wang et al. (2017), thus speeding up its convergence. 

Another restriction concerns the least-squares migration in 
general, including iterative methods, which are limited by 
effects that are not taken into account, such as transmission 
loss, attenuation, and mode conversion.

Finally, having the correct amplitudes in the reflectivity 
model will not automatically prevent stronger events from 
contributing more in the RFWI inversion, since they still 
generate stronger reflection energy, which result in stronger 
rabbit ears. However, the single-iteration LSRTM 
reflectivity can be naturally combined with kinematic-
based objective functions, which normalize the contribution 
from different events in the velocity update stage. These 
objective functions will also benefit from the improved 
reflectivity and synthetic data, as indicated by Figure 5. 

Conclusions 

Based on synthetic and field data results, we show the 
importance of compensating for the Hessian matrix effect 
in RFWI, i.e., using LSRTM instead of RTM for the 
calculation of its reflectivity. However, the cost of doing so
cannot be overlooked for large 3D data sets. Therefore, we 
propose a more efficient approach using single-iteration 
LSRTM, more specifically, using curvelet-domain   
Hessian filters. Despite some limitations, this approach was 
able to improve the RFWI results when compared to those 
using RTM to calculate the reflectivity. In addition, some 
of the discussed limitations can potentially be mitigated by 
using kinematic-based objective functions. 
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Figure 6: RTM migration using: (a) Initial velocity model, (b) RFWI model using RTM for reflectivity and (c) RFWI model using single-
iteration LSRTM for the reflectivity. For both tests, 10 iterations of RFWI using a maximum frequency of 4 Hz were performed. The 
correspondent velocity models are shown in the background.
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