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Summary 
We present the application to a 3D real dataset of full waveform inversion (FWI) with optimal transport (OT) using 
the Kantorovich-Rubinstein (KR) distance as proposed by Métivier et al. (2016). This approach involves an efficient 
numerical implementation for OT in time and space directions, allowing the lateral coherency of the traces to be 
taken into account; this has an important impact on the quality of the results. The approach also exhibits a slightly 
reduced sensitivity to local minima compared to least squares (LSQ) misfit. Moreover the iterative method used for 
the computation of the KR distance allows the production of a set of intermediary solutions that span progressively 
from LSQ to OT. We recall the main components of the approach and present its numerical implementation in 3D. 
We show the improvement of the results compared to conventional FWI on 2D synthetic and 3D real datasets for 
the same number of velocity update iterations. 
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Introduction 
 

Conventional full waveform inversion (FWI) is based on a least squares (LSQ) misfit function. It has 
proven to be effective for high-resolution velocity model building in areas investigated by diving and 
reflected waves. Due to cycle skipping, this cost function is however plagued by many local minima, 
and the local optimization process requires starting from a good initial model. Many alternate misfit 
functions have been proposed to mitigate this. Among those, Wasserstein distances, based on optimal 
transport (OT) theory, recently aroused attention in geophysics (Engquist and Froese, 2014; Métivier 
et al, 2016). This enthusiasm comes from their ability to deal with shifts between data (Yang et al, 
2017), thus potentially reducing the local minima issue. The introduction of OT into FWI is however 
not straightforward: “vanilla” OT theory addresses the comparison of positive data with the same 
mass (integral), which is not the case with seismic data, and computational aspects are critical due to 
the size of seismic data. 
 

Among the various formulations of OT FWI, Métivier et al (2016, 2016b) appears quite promising 
based on the results from synthetic 2D and 3D cases. Their approach is based on the use of a cost 
function involving a Wasserstein distance, and is directly applied on the seismic data. To remedy the 
issue of the conservation of the mass, the Wasserstein distance is slightly modified becoming the 
Kantorovich-Rubinstein (KR) distance (Lellmann et al, 2014). As nothing is done concerning data 
positivity, the method loses a part of its OT behaviour, i.e. has a reduced ability to sense shifts in the 
data. Interestingly, they use a multidimensional KR distance accounting for correlations between time 
samples, and traces within a shot, which has an important impact on the quality of the results. They 
propose a robust and efficient iterative numerical scheme to compute the KR distance, offering 
perspective for 3D industrial applications.  
 

In this article, we present an application of OT FWI to 3D real data, following the approach proposed 
by Métivier et al. (2016). We compare the results to the LSQ approach, and show the improvements 
brought by OT FWI (structural coherency of the velocity and slightly more robust to cycle skipping). 
We also emphasize the connection between LSQ misfit and KR distance: the iterative method used for 
the computation of the KR distance produces a set of intermediary solutions that span progressively 
from LSQ to OT.  
 

Theory 
 

For each shot, we denote by 𝑑𝑜𝑏𝑠(𝒙) the observed data and 𝑑[𝑚](𝒙) the data modelled using a 
subsurface model 𝑚. The data space 𝑿 is parameterized by the time and the receiver positions, i.e. a 
vector 𝒙 = (𝑡𝒙, 𝒓𝒙)+. For a FWI misfit measure ∑ 𝐽(𝑑𝑜𝑏𝑠, 𝑑[𝑚])𝑠ℎ𝑜𝑡𝑠 , the data gradient 𝛿𝐽/𝛿𝑑[𝑚] 
defines the adjoint-source, and thus the model gradient via the adjoint-state method (Plessix, 2006). 
𝑐𝑝(𝒙, 𝒚) = ‖𝒙 − 𝒚‖𝑝 denotes the Lp distance between vectors in the 𝑿 space. The LSQ misfit and 
data gradient are 

 𝐽𝐿2
(𝑑𝑜𝑏𝑠, 𝑑[𝒎] )  =  

1

2
𝑐2

2(𝑑𝑜𝑏𝑠, 𝑑[𝑚])         and        
𝛿 𝐽𝐿2

𝛿𝑑[𝑚] 
=  ∆𝑑[𝑚]                         (1)  

where ∆𝑑[𝑚] = 𝑑𝑜𝑏𝑠(𝒙) − 𝑑[𝑚] denotes the residual. The p-Wasserstein distance for two probability 
densities 𝑑1 and 𝑑2 in the data space is shown in Eq. (2), where s.t. denotes “subject to constraint”. 

𝐽𝑊𝑝

𝑝 (𝑑1, 𝑑2 ) = inf𝑻 ∫ 𝑐𝑝
𝑝

(𝒙, 𝑻(𝒙))𝑑2(𝒙)𝑑𝒙
𝑿

     s. t.     𝑻 ∈ 𝑚𝑎𝑝𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒 𝑑2 𝑖𝑛𝑡𝑜 𝑑1    (2)  

Eq. (2) is similar to the original Monge OT problem that seeks the minimum cost to transport mass 
from 𝑑2 to 𝑑1, from the 𝑿 space cost 𝑐𝑝

𝑝  point of view (Villani, 2008). As OT requires positive 𝑑1 and 
𝑑2 with equal masses, it cannot be readily applied to seismic data. To overcome this limitation, Yang 
et al (2017) and Qiu et al (2017) proposed positive transformations of the seismic data followed by 
rescaling to the same mass. One of the drawbacks of this transformation is that noise or unpredicted 
data can largely influence the inversion (Métivier et al., 2016). They chose the p=2 case, i.e. the 
squared 2-Wasserstein distance related to the LSQ cost 𝑐2

2. As solving eq. (2) in the multi-dimensional 
data space is computationally demanding because it implies solving the Monge-Ampère equation (Qiu 
et al, 2017), most of their applications consider 1D data space, i.e. measure time direction differences. 
Then 𝒙 represents the time direction, 𝑥 = 𝑡, and eq. (2) is solved for each trace independently.  
 

https://library.seg.org/action/doSearch?ContribAuthorStored=Engquist%2C+Bj%C3%B6rn
https://library.seg.org/action/doSearch?ContribAuthorStored=Froese%2C+Brittany+D
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Métivier et al (2016) started from the 1-Wasserstein distance, i.e. p=1 in eq. (2). Kantorovich and then 
Rubinstein showed that then eq. (2) can be reformulated as linear (dual) problems that can be 
computed using linear programming. But the use of data with different masses creates mathematical 
singularities. To overcome that, one can add a bounding constraint that leads to the so-called KR 
distance (Lellmann et al, 2014) where the seismic data can directly be used 

𝐽𝐾𝑅(𝑑𝑜𝑏𝑠, 𝑑[𝑚]) = max𝜑 ∫ 𝜑(𝒙)∆𝑑[𝑚](𝒙)𝑑𝒙
𝑿

  s. t.  |𝜑(𝒙) − 𝜑(𝒚)| ≤ 𝑐1(𝒙, 𝒚)  &  |𝜑(𝒙)| ≤ 𝐾   (3)  

𝜑 is the solution of the dual problem (3). The first constraint on 𝜑 is called 1-Lipschitz for the metric 
𝑐1. It imposes that 𝜑 is continuous and changes in 𝜑 are sufficiently slow with respect to 𝑐1. This 
produces low frequencies in 𝜑, which is crucial for OT behaviour. The 2nd finite bound constraint on 
𝜑 allows us to overcome the mass conservation requirement and use seismic data with different 
masses without creating singularities. The solution of equation 3 denoted by 𝜑𝑚𝑎𝑥 depends on the 
residual.  In this case, the adjoint-source is defined by 𝛿𝐽𝐾𝑅/𝛿𝑑[𝑚] = 𝜑𝑚𝑎𝑥 (because we can show 

∫
𝛿𝜑𝑚𝑎𝑥(𝒙)

𝛿𝑑[𝑚](𝒚)
∆𝑑[𝑚](𝒙)𝑑𝒙 ≈ 0

𝑿
), allowing us to use the adjoint-state method to compute the model 

gradient. The 1-Lipschitz constraint in eq. (3) can be reformulated as a local constraint which leads to 
a computationally tractable scheme to iteratively solve the discretized eq. (3) (Métivier et al, 2016b).  
 

Implementation and methodology improvement 
 

We have implemented the Simultaneous Descent Method of Multipliers (SDMM) convex 
optimization method and the Laplace solver as proposed by Métivier et al (2016b)  considering time 
and inline receiver dimensions in 𝒙 = (𝑡𝒙, 𝑟𝒙

𝑖𝑛𝑙𝑖𝑛𝑒)+, i.e. resolving eq. (3) for each crossline (the 
crossline direction being sparser and more aliased than the inline one in the marine case). 
 

K value: From L1 to OT 
Choosing a good K value is important for the success of the scheme. For large K, the KR distance (3) 
becomes equivalent to the 1-Wasserstein distance, i.e.pure OT, in the case of positive and equal mass 
data. Using seismic data requires sufficiently reducing K to avoid singularities. But if K is chosen too 
small, i.e. causing all the bounding constrainst in eq. (3) to saturate, it can be proven that the KR 
distance becomes then equivalent to the L1 distance (up to a proportionality constant that is 
compensated by line search) (Lellmann et al, 2014). We were able to find the good balance for K. 
 

Number of iterations: From LSQ to OT 
N denotes the number of SDMM inner iterations to resolve eq. (3). In our implementation for N=0, 
KR FWI reduces to LSQ FWI, and that increasing N will “add” more and more OT. Our experience 
shows that for real data, full convergence can require quite large N values (up to 1000) which can be 
computationally demanding in 3D cases. We were able to define an N value that represents a good 
balance between sufficient OT behavior and full convergence. 
 

The K and N parameters are interesting because they allow us to define a hybrid misfit that mixes OT 
with conventional misfits if desired, namely L1 (from K) and LSQ (from N). We believe this 
flexibility and the controllable continuum between those 3 misfits is a strong point.  
 

Parameterization of the metric: Crucial for success 
Because 𝒙 mixes different physical units, the 𝑐1 metric that appears in the 1-Lipschitz constraint of eq. 
(3) must necessarily be a generalized L1 distance. We parameterize it in a Mahalanobis-like fashion 

𝑐1(𝒙, 𝒚) =
1

𝜎𝑟
𝑖𝑛𝑙𝑖𝑛𝑒

{𝑣|𝑡𝒙 − 𝑡𝒚| + |𝑟𝒙
𝑖𝑛𝑙𝑖𝑛𝑒 − 𝑟𝒚

𝑖𝑛𝑙𝑖𝑛𝑒|} 

where 𝜎𝑟
𝑖𝑛𝑙𝑖𝑛𝑒 represents a variance in the inline (distance) direction and 𝜎𝑡 = 𝑣/𝜎𝑟

𝑖𝑛𝑙𝑖𝑛𝑒 a variance in 
the time direction. 𝑣 is a velocity. It can be demonstrated that for full convergence (i.e. sufficiently 
large N), any choice for 𝜎𝑟

𝑖𝑛𝑙𝑖𝑛𝑒 is almost equivalent in eq. (3) when an optimal K is considered (they 
will almost only differ by a proportionality constant compensated by line search). But in practice, we 
can only run finite number of iterations. Hence, our objective is to find 𝜎𝑟

𝑖𝑛𝑙𝑖𝑛𝑒 and 𝜎𝑡 that can 
improve the rate of convergence. 𝑣 defines the average direction along which most correlations 
between traces occur, thus is closely related to the average move-out direction. We were able to 
define optimum 𝜎𝑟

𝑖𝑛𝑙𝑖𝑛𝑒 and 𝑣 values. 
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Figure 1 3D real dataset with a mute for a 6Hz inversion. Left: LSQ data gradient (or residual). 
Middle: KR data gradient for N=600. Right: Corresponding amplitude spectra comparison. 
 

Fig. 1 compares, for a real 3D shot-gather data (with a mute), a LSQ gradient (or residual) and a KR 
distance gradient for N=600. The latter has much more low frequencies and a skeleton-like texture in 
both time and inline directions due to the 1-Lipschitz constraint. The use of KR with 
multidimensional data space (time and inline directions) allowed us to recover nice continuity and 
amplitude balancing in the move-out direction. 
 

Application to synthetic and field dataset 
 

We tested the scheme on the 2D Marmousi 2 dataset and on a real narrow-azimuth marine dataset. We 
used N≤600 SDMM inner iterations for each KR problem, and a preconditioned L-BFGS optimization 
scheme for the FWI optimization process, with a number of FWI iterations between 6 and 20. 
 

For Marmousi, 20 FWI iterations were performed directly at up to 10Hz, keeping all the data (first 
break, reflections, multiples…) and starting with a smooth initial velocity model obtained by Gaussian 
filter smoothing of the true model. The top panels of Fig. 2 show those models. The synthetic data 
was created in the constant-density acoustic approximation with a Ricker source centred on 6 Hz. The 
bottom panels of Fig. 2 shows that the model estimated by KR FWI matches the true model better 
than LSQ FWI, especially in highlighted zones. KR better mitigates cycle-skipping and produces 
more continuity along structures. 
 

 
Figure 2 Marmousi 2 model test. FWI velocity. 20 FWI iterations performed directly at up to 10Hz, 
keeping all the data (first break, reflections, multiples…) and using the same smooth starting model. 
 

For the 3D case, the field dataset was taken from the Siri field in the Danish North Sea. The survey 
consists of 6 towed streamers with a maximum offset of 3km. Time domain FWI was run at 6, 8 and 
10 Hz consecutively with 6 iterations at each frequency block. Due to the relatively simple and flat 
geology and to the absence of long offsets (maximum penetration of diving waves < 800m) there was 
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no sign of cycle skipping in the part resolvable with FWI even with a quite smoothed starting model. 
Nevertheless, KR FWI was able to deliver a better model, more coherent with geological structures 
compared to LSQ FWI (Fig. 3). It thus seems a final LSQ FWI pass is unnecessary. The accuracy of 
KR FWI is confirmed with migrated gather flatness. We expect a much larger uplift from KR FWI in 
a more complex geological setting, with longer offset acquisitions and lower frequency content data. 
 

 
Figure 3 3D real data test. Stack overlaid with FWI velocity, and migrated gathers (Data courtesy of 
WesternGeco Multiclient). LSQ and KR FWI are run with same configuration: 6 iterations at 6, 8 and 
10Hz using same smooth starting model. 
 

Conclusions 
 

We have presented the application to a 3D real dataset of OT FWI using the KR distance as proposed 
by Métivier et al. (2016). It is based on an efficient numerical implementation allowing for time and 
space directions OT, with the benefits of an improved structural consistency and a reduced sensitivity 
to cycle skipping compared to LSQ FWI. In practice it offers an interesting extension to LSQ FWI, 
producing a set of intermediary solutions that span progressively from LSQ to OT. 
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