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Summary 
 
Least-squares migration (LSM) can potentially provide 
better amplitude fidelity, higher image resolution, and 
fewer migration artifacts than standard migration. 
Conventional LSM is often solved iteratively through 
linearized inversion, and therefore is often referred to as 
iterative LSM. In recent years, various single-iteration 
LSM approaches have been proposed as a cost-effective 
approximation of iterative LSM and have produced 
promising results. To exploit the full potential of LSM, we 
propose to employ the curvelet-domain Hessian filter 
(CHF) for single-iteration LSM as a preconditioner for 
conventional iterative LSM. We call this approach CHF-
preconditioned LSM (CPLSM). We first validate our 
CPLSM approach using SEAM I synthetic data and show 
that it produces better amplitude fidelity over the single-
iteration CHF approach and converges faster than 
conventional iterative LSM. Furthermore, we demonstrate 
with an application to field data that CPLSM produces 
fewer migration artifacts and less noise than conventional 
iterative LSM. This helps to address a known problem of 
iterative LSM that is caused by the overfitting of modeled 
synthetic data (with possibly missing physics) to recorded 
data. 
 
Introduction 
 
To image the reflectivity of the subsurface, we need to 
reverse the forward wave-propagation effects with an 
inverse of the forward modeling operator. Reverse time 
migration (RTM), the current state-of-the-art imaging 
technology for complex structures (Baysal et al., 1983; 
Etgen et al., 2009; Zhang et al., 2009), uses an adjoint 
modeling operator to approximate the inverse of the 
forward modeling. The accuracy of this approximation is 
degraded by spatial aliasing, limited aperture, noise, and 
non-uniform illumination due to complex overburden 
(Claerbout, 1992). As a result, the RTM image may have 
migration artifacts resulting from limited bandwidth and 
uneven amplitudes.   
 
Least-squares RTM (LSRTM) on the other hand, 
approximates the inverse of the forward modeling operator 
through a linearized least-squares inversion by fitting the 
synthetic and recorded data and can potentially overcome 
the aforementioned limitations of RTM. The often-cited 
benefits of LSRTM include more correct image amplitudes 
due to the ability to compensate for illumination loss 
caused by complex overburden and limited acquisition 
setup effects; more coherent images due to the ability to 
reduce migration artifacts; and higher image resolution due 

to the LSRTM ability to remove the source signature and 
source/receiver ghost, as well as migration stretch (Wong et 
al., 2011; Dong et al., 2012; Dai et al., 2013; Zhang et al., 
2013; Zeng et al., 2014). Not surprisingly, LSRTM is being 
recognized as the next-generation technology for subsalt 
imaging in the deepwater Gulf of Mexico (GOM) and 
elsewhere. 
 
However, iterative LSRTM is often prohibitively expensive 
due to a slow convergence rate (ill-conditioned Hessian 
matrix for complex structures) and can suffer from 
migration artifacts and noise due to overfitting of 
inaccurately modeled synthetic data (inaccurate velocity 
and inadequate physics used for the modeling process) to 
the recorded data. Various strategies have been proposed to 
reduce the computational cost: (1) approximating iterative 
LSM with single-iteration LSM (Guitton, 2004; Lecomte, 
2008; Fletcher et al., 2016; Wang et al., 2016; Khalil et al, 
2016), (2) speeding up the convergence rate of iterative 
LSM through preconditioning of the least-squares inversion 
(Symes, 2008; Tang and Lee, 2015; Huang et al., 2016), 
and (3) reducing the number of wave propagations through 
data-encoding (Dai et al., 2013). Other strategies have been 
proposed to reduce migration artifacts induced by data 
overfitting, including a sparse transform of the gradient or 
the total image (Dutta et al., 2016) and structural smoothing 
(Dai et al., 2016).  
 
In this study, we extend the CHF operator proposed by 
Wang et al. (2016) for single-iteration LSM as a 
preconditioner for iterative LSM to speed up the 
convergence rate of iterative LSM. In addition, we found 
that this CHF-preconditioned iterative LSM (CPLSM) can 
also reduce migration artifacts and noise that are often 
observed in conventional iterative LSM, thanks to the 
sparsity constraint used in the curvelet transform and the 
dip- and frequency-dependent illumination compensation in 
the curvelet domain. 
 
Theory 
 
Wang et al. (2016) proposed an image-domain single-
iteration LSM approach that approximates the inverse of 
the Hessian matrix with CHF. In this section, we first 
introduce this CHF approach and then show how to extend 
the CHF operator to precondition conventional iterative 
LSM as a second-order optimization problem. During this 
process, we also explain why the CHF operator is capable 
of mitigating the two major difficulties discussed above 
regarding iterative LSM: (1) the slow convergence rate due 
to ill-conditioned Hessian matrix and (2) migration artifacts 
and noise due to overfitting the modeled synthetic to the 
recorded data. 
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Image-domain single-iteration LSM: CHF 

 
Data-domain LSM inverts for a reflectivity model, ݉, to fit 
the recorded data, ݀଴ (Tarantola, 1987; Schuster, 1993; 
Nemeth et al., 1999): 

݂(݉) = ଵ
ଶ
‖݀଴ −  ଶ,                                             (1)‖݉ܮ

where ݂(݉) is the cost function to be minimized and ܮ is 
the linearized Born modeling operator. If ܮ்ܮ is invertible, 
the least-squares solution for Equation 1 can be written as:  

݉ =  ଴,                                                   (2)்݀ܮଵି(ܮ்ܮ)
where ்ܮ is the migration operator and ܮ்ܮ is the so-called 
Hessian matrix, ܪ.  
 
The key to LSM is to find the inverse of the Hessian 
matrix. Directly computing and inverting the Hessian 
matrix are impractical for real 3D problems. Following the 
strategy proposed by Guitton (2004), Wang et al. (2016) 
proposed to approximate the inverse of the Hessian matrix 
using a matching filter between the raw image and the 
demigration/remigration image in the curvelet domain. In 
this approach, Born modeling is first performed using the 
migration velocity and the raw migration image, ݉଴, as a 
reflectivity model to obtain synthetic data which are then 
remigrated to obtain a new image: 

	݉௥ =  ଴.                                                         (3)݉ܮ்ܮ
  
Next, the matching filter ݏ between ݉௥ and ݉଴ can be 
found to approximate the inverse of the Hessian Matrix 
 ଵ in the curvelet domain by minimizing the followingିܪ
cost function: 

(ݏ)݂ = (଴݉)ܥ‖ − ଶ‖(௥݉)ܥݏ +  ଶ,                 (4)‖ݏ‖߳
where ܥ is the curvelet transform operator, ݏ is the 
matching filter, and ߳ is a weighting factor for Tikhonov 
regularization. The output of single-iteration LSM using the 
CHF approach can be written as: 

݉ =  ൯,                                            (5)(଴݉)ܥ|ݏ|ଵ൫ିܥ
where ିܥଵ is the inverse curvelet transform operator and | | 
is used to remove the phase, making the matching filter 
zero-phase, which is important when this approach is 
extended for surface-offset gathers (Wang et al., 2016).  
 
Using both 3D synthetic and field data, Wang et al. (2016) 
demonstrated that as a single-iteration LSM approach, CHF 
can effectively compensate for amplitude loss due to poor 
illumination caused by complex salt bodies, thus improving 
the amplitude fidelity of standard RTM. To exploit the full 
potential of LSM, a gradient-based iterative inversion 
scheme is still needed. Next, we show how to extend the 
curvelet-domain Hessian filter ݏ introduced above to 
precondition conventional iterative LSM. 
 
CHF-preconditioned iterative LSM (CPLSM) 

 
Conventional iterative LSM solves Equation 1 through 
linearized inversion, in which the gradient can be written 
as: 

	݃ = ଴݀)்ܮ −  (6)                                                   .(݉ܮ

The convergence of this approach is usually slow because 
(1) the Hessian matrix is often ill-conditioned, mostly due 
to unbalanced illumination, and (2) the difference between 
the modeled synthetic and recorded data is often large due 
to inaccurate synthetic modeling. One way to improve the 
method is to use a second-order Gauss-Newton 
optimization: 

݃ = ଴݀)்ܮଵି(ܮ்ܮ) −  (7)                                     .(݉ܮ
However, as mentioned above, direct computation of 
 ଵ is impractical for real 3D problems. We can useି(ܮ்ܮ)
the CHF operator ݏ defined in Equation 4 as a curvelet-
domain approximation of (ܮ்ܮ)ିଵ. The preconditioned 
gradient can then be written as: 

݃௣ = ଴݀)்ܮ)ܥ|ݏ|ଵ൫ିܥ −  ൯.                              (8)(݉ܮ
CPLSM can then be formulated as: 

݉௡ାଵ = ݉௡ + ଴݀)்ܮ)ܥ|ݏ|ଵ൫ିܥ௡ߙ −  ௡)൯,         (9)݉ܮ
where ߙ௡ is the step length calculated by line search: 

௡ߙ = (௅೅௅௚೛,			௅೅ௗబି௅೅௅௠೙)
(௅೅௅௚೛,			௅೅௅௚೛)

.                                     (10) 
We note that the image from the first iteration of CPLSM, 
݉ଵ, is equivalent to the image obtained with the single-
iteration CHF approach proposed by Wang et al. (2016), 
when ݉଴ is chosen to be zero.  
 
Application to synthetic data 
 
The SEAM I model contains realistic velocity/density 
contrasts with complex salt geometries that create a variety 
of illumination issues and thus distort the amplitude 
response for subsalt events. Figure 1a shows the zero-angle 
reflectivity model computed from the SEAM I velocity and 
density models followed by a convolution with a Ricker 
wavelet of maximum frequency 10 Hz. The amplitudes of 
subsalt events along all the horizons are fairly uniform. 
This will be used as a reference to evaluate the amplitude 
fidelity of different imaging algorithms. The synthetic input 
data (without surface multiples or added noise) are 
simulated using acoustic full-wave modeling. The 
modeling frequency is 10 Hz, the shot grid is 150 m × 150 
m, the receiver grid is 100 m × 100 m, and the maximum 
offset is 8 km in both inline and crossline directions.  
 
In the raw RTM image (݉଴) migrated using the true 
velocity model (Figure 1b), we observe that, compared to 
the reference in Figure 1a, the amplitudes of subsalt events 
are relatively weak due to poor illumination caused by the 
overburden salt. Figures 1c and 1d show images after the 
first iterations of conventional iterative LSRTM and CHF-
preconditioned iterative LSRTM (CPLSRTM), 
respectively. While both images show improved amplitude 
response compared to the raw RTM image in Figure 1b, the 
latter (equivalent to single-iteration CHF) is more effective 
because the curvelet-domain Hessian filter better handles 
the dip- and frequency-dependent illumination patterns. 
Figure 1f shows results after 3 iterations of CPLSRTM. We 
can see that it further improves the amplitude fidelity over 
the single-iteration CHF results in Figure 1d, and the 
CPLSRTM image is also better than the results obtained 
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after 10 iterations of conventional iterative LSRTM (Figure 
1e). This indicates that preconditioning with the CHF 
operator does improve the convergence rate of iterative 
LSRTM. Compared to the ground truth in Figure 1a, we 
can still observe areas (e.g., below the salt in the top-left) 
where the amplitude distortion is not fully recovered after 3 
iterations of CHF-preconditioned iterative LSRTM. We 
expect that further iterations will improve the results. 
However, as also observed in other LSRTM approaches, it 
is very difficult to recover those events with extremely low 
amplitudes in the raw RTM, and, obviously, impossible to 
recover completely unimaged events. 

 
GOM field data example 
 
A staggered variable-depth streamer data set from Keathley 
Canyon, GOM was selected for the field data test. 
Although known for well-defined salt geometries and 
overall good images, subsalt images in this area still suffer 
from uneven illumination, visible migration artifacts, and 
sub-optimal resolution. The input data underwent typical 
preprocessing to remove noise, ghost energy, multiples, etc. 
For this test, we compared standard RTM with 6-iteration 
conventional iterative LSRTM and 2-iteration CPLSRTM. 
 
Compared to the raw RTM image (Figure 2a), conventional 
iterative LSRTM (Figure 2b) produced more continuous 
subsalt events, particularly within the orange circle in 
Figure 2a. Similar to the results of the synthetic test, subsalt 
amplitudes in the field data are also more uniform after all 
the LSRTM approaches (Figures 2b-d). The resolution of 
the subsalt region in the conventional iterative LSRTM 
results (Figure 2b) appears to be higher than the raw RTM 
stack (Figure 2a). However, part of the higher resolution in 
the iterative LSRTM comes from boosted noise content and 
migration artifacts that are likely caused by overfitting of 
some events that were present in the input data but could 
not be correctly modeled by acoustic Born modeling. We 
stopped the test at the 6th iteration despite the presence of 
primary signal still in the data residual, because the noise 
level continued increasing with the number of iterations.  
 
The single-iteration CHF image (Figure 2c) also shows 
balanced amplitudes and more continuous events in the 
subsalt. Unlike conventional iterative LSRTM, CHF did 
not noticeably alter the vertical resolution or frequency 
content. This is because we did not model the ghost when 
generating the demigration/migration image since the input 
had already been deghosted, and we used a spiky source 
wavelet for both demigration and migration. As a result, the 
demigration/migration image (݉௥) has similar frequency 
content to the raw RTM image (݉଴). In addition, the 
design of CHF discourages over-boosting of frequency 
content with low signal-to-noise ratio (S/N) in the raw 
RTM image. Alternatively, one can use a band-limited 
source wavelet (not necessarily a true one) instead of a 
spiky one in Born modeling and subsequent migrations to 
broaden the bandwidth through wavelet deconvolution. 

However, if S/N is low, using a band-limited wavelet will 
inevitably boost noise as well. 
 
Figure 2d shows the second iteration CPLSRTM results, 
which have better amplitude fidelity and higher resolution 
than the single-iteration CHF results (Figure 2c) despite the 
fact that only 2 iterations were performed. Also, we noticed 
that the second iteration CPLSRTM has fewer migration 
artifacts and noise than the second iteration of conventional 
iterative LSRTM (not shown here) due to the sparsity 
constraints from the curvelet transform, as well as dip- and 
frequency-dependent Hessian preconditioning. 
  
Discussion and conclusions 
 
We presented a preconditioned iterative LSM approach that 
uses the curvelet-domain Hessian filter as a preconditioner. 
Using both synthetic and field data, we demonstrated that 
CHF-preconditioning can significantly speed up the 
convergence rate of iterative LSM and gives better 
amplitude fidelity with a smaller number of iterations than 
conventional iterative LSM. In addition, CHF-
preconditioning can reduce migration artifacts and noise 
that are often observed in conventional iterative LSRTM 
results for field data. 
 
Wang et al. (2016) demonstrated that a single-iteration 
CHF approach cannot recover completely unimaged events 
(or those with extremely low amplitudes) in the raw RTM 
image. A better velocity model and/or a better input data 
set can provide a better approximation of the inverse of the 
Hessian matrix and a better initial raw RTM. This also 
applies to CPLSRTM. In fact, at locations that benefit from 
the single-iteration CHF approach over the raw RTM, 
additional uplift is often observed from CPLSRTM. 
Conversely, if not much benefit is observed in the first 
iteration, more iterations will likely not help much more.  
 
We showed that CHF preconditioning can be used to 
mitigate the migration artifacts and noise caused by the 
overfitting between the inaccurately modeled synthetic and 
recorded data. On the other hand, it is fundamentally more 
important to improve the accuracy of our synthetic 
modeling by improving the velocity model and introducing 
more physics into our wave propagation such as Q effects 
(Zhang and Ulrych, 2007; Dutta and Schuster, 2014) and 
elastic effects (Stanton and Sacchi, 2015).  
 
Tang and Lee (2015) demonstrated that a Hessian 
approximation based on non-stationary point-spread 
functions can be used to precondition FWI and thus speed 
up its convergence and improve the velocity update. The 
preconditioning scheme based on the CHF operator we 
described above can be readily extended to FWI as well.  
 
Acknowledgments 
 
We thank SEG for the SEAM I 3D model and CGG for 
permission to publish this work.  



CHF-preconditioned iterative LSM 
 
 

 
Figure 1: SEAM I synthetic study: Stacked images-(a) true reflectivity; (b) raw RTM using input data after shot and receiver deghosting; 
(c) image after conventional LSRTM (iteration 1); (d) image after CHF-preconditioned iterative LSRTM (iteration 1); (e) image after 
conventional iterative LSRTM (iteration 10); (f) image after CHF-preconditioned iterative LSRTM (iteration 3). 

Figure 2: GOM field data example: Stacked images-(a) raw RTM using input data after shot and receiver deghosting; (b) image after 
conventional iterative LSRTM (iteration 10); (c) image after CHF-preconditioned iterative LSRTM (iteration 1); (d) image after CHF-
preconditioned iterative LSRTM (iteration 2)


