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Summary 
 
It is well-known that standard migration is not a true 
inverse operation and is based on the adjoint of the forward 
modeling operator. Due to this approximation the resulting 
migrated image can often suffer from various artifacts and 
uneven illumination issues, especially in regions of 
complex geology. Least-squares depth migration 
approximates the inverse of the forward modeling and can 
be used to reduce these problems. We show two real data 
applications of a single-iteration (non-iterative) Kirchhoff 
least-squares depth migration process to highlight the 
benefits of this technique. Our first example demonstrates 
improved amplitude behavior of the least-squares migration 
results on an offshore Gabon data set. In the second 
example we show an efficient way to include attenuation in 
the least-squares migration process, and highlight a stable 
uplift in resolution and illumination compensation of the 
final image using a Central North Sea data set.  
 
Introduction 
 
In recent years, least-squares migration has again become 
an active topic in industry and academia, with a number of 
publications showing uplift on both synthetic and field data 
(Dong et al., 2012; Zhang et al., 2013; Fletcher et al., 2015; 
Valenciano et al., 2015; Duprat and Baina, 2016; Khalil et 
al., 2016; Wang et al., 2016; Casasanta et al., 2017; Wu et 
al., 2017). The promise of least-squares migration is to 
reduce the problems associated with standard migration 
being the adjoint of the forward modeling operator 
(Nemeth et al., 1999). In fact, the application to under-
sampled and irregularly acquired seismic data causes 
migration noise and (swing) artifacts, as well as uneven 
illumination in the image (Huang et al., 2014). An 
appropriate pre-processing sequence can help mitigate 
these problems, but the underlying issue remains. 
 
The large dimensionality of the seismic imaging problem 
means the migration inverse is only realistically solved 
using an iterative, gradient-based, approach. However, this 
is a slow and costly process involving multiple iterations of 
migration and de-migration. Here we present results from a 
practical and efficient common-offset, single iteration, 
least-squares Kirchhoff migration, inspired by the general 
idea of using non-stationary matching filters to estimate the 
effect of the Hessian operator (Guitton, 2004). In this paper 
we briefly recap the least-squares migration equations and 
demonstrate the uplift on resulting AVO work from an 
offshore Gabon data set. Then we show how to include 
attenuation in the least-squares migration scheme to give 

the overall effect of an attenuation-compensating prestack 
depth migration and highlight the improvement in both 
resolution and illumination on a Central North Sea data set. 
 
Least-squares migration 
 
If we denote the acquired seismic data by d, the subsurface 
reflectivity traces as r and the Kirchhoff modeling operator 
as L, then Kirchhoff forward modeling (or de-migration) 
can be written as a linear operator: 
 

 .Lrd      (1) 
 
Solving the inverse problem clearly gives the desired 
subsurface reflectivity, r = L-1 d, but computation of the 
direct inverse is not feasible with realistic seismic 
acquisition. The common alternative is to apply the adjoint, 
LH, of the forward operator, L, in Equation (1) (Claerbout, 
1992) to the acquired data, d: 
 

 ,dLm H     (2) 
 
where m is the Kirchhoff migrated image that, as a result of 
the adjoint operator, suffers from artifacts and illumination 
issues. Nemeth et al. (1999) developed a formulation to 
mitigate these effects through the minimization of a least-
squares cost function, f(r) = ║ d – Lr ║2, that matches 
observed data with modeled (de-migrated) data to update 
the migrated image. The solution of the usual least-squares 
normal equations gives: 
 

   ,1 dLLLr HH 
    (3) 

 
where LHL is generally referred to as the Hessian operator. 
As mentioned earlier, Equation (3) can be solved 
iteratively, but we see that substituting Equation (2) into (3) 
gives: 
 

   .1mLLr H 
    (4) 

 
Guitton (2004) proposed that the action of the inverse 
Hessian, (LHL)-1, can be estimated via non-stationary 
matching filters following a de-migration / re-migration 
process: the filters derived to match the re-migration back 
to the initial migration are then applied to the initial 
migrated image to give an estimate of the reflectivity (via 
Equation 4). The cost of this least-squares migration 
process, and its mechanics of de-migration / re-migration, 
is similar to those of a single iteration of iterative schemes. 
As a key part of this process, we are aided by the use of 
curvelet domain filters for improved stability and structural 
consistency in the matching (Wang et al., 2016). 
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Offshore Gabon data example 
 
We demonstrate the single-iteration least-squares migration 
scheme on a 3D marine seismic data set acquired in the 
deep-water part of the South Gabon Basin. The survey was 
acquired using a variable-depth towed-streamer 
configuration for low-noise, broad-bandwidth data 
(Soubaras and Dowle, 2010). Previously we have shown 
that while the Kirchhoff depth migration provides detailed 
structural images, the presence of salt bodies result in 
cross-cutting swing artifacts and uneven illumination in 
some locations, together with speckled noise and reduced 
event coherency in the deep pre-salt region (Casasanta et 
al., 2017). Least-squares migration was seen to lessen the 
close-to-vertical migration swing artifacts and also, in 
general, to balance illumination, reduce noise and improve 
event coherency in the overall image. 
 
The changes in the migration artifacts, noise and 
illumination occur in each offset class and, hence, have an 
impact on the resulting AVO attributes. Figure 1 shows a 
comparison of the AVO gradient sections inverted from the 
standard and least-squares migration approaches, where the 
(qualitative) visual appearance is of a cleaner and more 
coherent AVO section. Unfortunately there is no well data 
available in this area to allow us to make a formal 
comparison of well and seismic reflectivity or AVO. 
However, a more quantitative analysis of this data is shown 
in the AVO cross-plots of Figure 2. Here we show intercept 

vs. gradient plots for a shallow and deep window for the 
standard Kirchhoff and the least-squares migration image. 
In the shallow comparison of Figures 2a and 2b we see a 
tighter correlation in the least-squares migration data 
coming from reduced migration artifacts/noise in the 
underlying seismic data. The behavior in the deeper 
comparison needs more interpretation: it is well-known that 
the AVO intercept and gradient are (anti-) correlated 
attributes, and that this correlation gets stronger as the 
maximum available incidence angle decreases and/or the 
noise level increases in the data (Cambois, 1998; Ratcliffe 
and Adler, 2000; Herrmann and Cambois, 2001). In the 
shallow we have good angle coverage and, hence, the 
cross-plot suffers much less from this intrinsic bias. 
However, in the deeper section there is a tight correlation in 
the data from the standard migration – this is likely 
influenced by the higher noise level combined with the 
reduced maximum incidence angle in the data at depth, due 
to a fixed maximum offset, rather than a purely background 
geological trend. The least-squares migration data gives a 
more diffuse cross-plot, likely caused by a reduction in the 
(highly correlated) noise trend in this data.  
 
The data pre-processing here includes the usual de-multiple 
and de-noise steps, together with the elements (de-ghosting, 
spectral balancing, regularization and interpolation) that are 
designed to improve the quality of the standard Kirchhoff 
image. The same data is used to generate both sets of 
results to ensure a fair and realistic comparison. 

Figure 1:  Comparison of AVO gradient sections after: (a) standard migration, and (b) single-iteration least-squares migration. We see reduced 
noise and improved event continuity on the least-squares image. The white and black brackets indicate the time windows used in Figure 2. 
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Least-squares migration with attenuation 
 
The anelastic nature of the earth leads to absorption of 
seismic waves in the form of amplitude attenuation and 
phase distortion. Conventional acoustic migration assumes 
these effects are handled either pre- or post-migration. 
However, the quality factor that models absorption (Q for 
brevity) can be included in the standard migration to 
compensate for these effects (Xie et al., 2009). To include 
attenuation in the least-squares migration process, we 
modify the modeling Equation (1): 
 

 ,rLd Q     (5) 
 
where LQ now represents the Kirchhoff visco-acoustic 
modeling operator (Wu et al., 2017). Formulating a least-
squares cost function, f(r) = ║ d – LQr ║2, and solving the 
normal equations gives a new version of Equation (3): 
 

   .1 dLLLr H
QQ

H
Q


    (6) 

 
Within the visco-acoustic Kirchhoff modeling operator (see 
Wu et al., 2017 for details), we highlight that the absorption 
can be modelled by a so-called dissipation function, D: 
 
 )],/ln()/exp[(]2/exp[),,,( 0

**  TiTxyxD rs    
 
where xs and xr are the shot and receiver coordinates, T* is 
the dissipation time (a function of velocity and Q),  is the 
temporal frequency and 0 the Q reference frequency. This 
function contains a negative real exponential term to model 
amplitude attenuation and an imaginary exponential term to 
model the frequency-dependent phase distortion.  

 
It is interesting to look at the mechanics of these equations 
to better understand the Kirchhoff visco-acoustic modeling 
operator, how it interacts in a least-squares scheme, and, 
also, contrasts with a Q-compensating migration. Starting 
with the flow in Equation (6), we note that the adjoint of 
the dissipation function still contains a negative real 
exponential term, i.e. still attenuates, but now has a sign-
reversed imaginary exponential term for the phase 
restoration. Hence: (i) the acquired seismic data, d, is 
attenuated with a given imaginary exponential term for 
phase distortion due to Q absorption, (ii) the Kirchhoff 
visco-acoustic modeling operator, LQ, simulates the 
amplitude attenuation and phase distortion effects of the 
earth, and (iii) the adjoint of the Kirchhoff visco-acoustic 
modeling operator, LQ

H, again attenuates but with a sign-
reversed imaginary exponential term to compensate for 
phase distortion. As a consequence, the Hessian term (LQ

H 
LQ) contains a double attenuation but has distorting and 
restoring phase behaviors that cancel within it, as does the 
data formed in the initial migrated image (LQ

H d). When we 
apply the inverse Hessian (which is a double amplitude 
boost) to the initial (double attenuated) migration we end 
up with an image that is free from the effects of Q. We note 
that, somewhat counterintuitively, this initial migration 
(LQ

H d) is not a Q-compensating migration, yet the least-
squares flow delivers an overall Q-compensating behavior. 
 
Solving Equation (6) involves the application of Q in all the 
workflow steps: initial migration, de-migration and re-
migration. In general, visco-ascoustic Kirchhoff forward 
and adjoint operators are more computationally demanding 
than their acoustic counterparts. This makes least-squares 
migration with attenuation a more expensive process. By 
stepping away from the least-square migration framework 
of Equation (6), one can design more cost effective 
approaches, involving the application of only one 
attenuating operator and conventional acoustic 
migrations/de-migrations (Y. Xie and P. Wang, personal 
communication, 2016). This new flow can be defined by: 
 

   ,1 dLLLr H
Q

H 
    (7) 

or 
   ,1* dLLLr H

Q


    (8) 
 
where the new symbol, LQ

*, denotes a migration operator 
with the same amplitude and phase behavior of the visco-
acoustic modeling operator. Similar arguments to those 
discussed above on the mechanics also hold for the new 
flows in Equations (7) and (8): in these we highlight a key 
point related to the phase distortion term cancelling (as 
desired) because we use appropriate modeling and 
migration operators in these equations. Any Q behavior in 
these operators always attenuates and has a given 
exponential term for phase distortion due to Q absorption. 

 
Figure 2: Comparison of AVO intercept (R0) vs. gradient (G) 
cross-plots for: (a) and (c) standard migration (blue), and (b) and 
(d) single-iteration least-squares migration (red) for the shallow 
and deep analysis time windows highlighted in Figure 1. 

 



Applications of single-iteration Kirchhoff least-squares migration 

 
Central North Sea data example 
 
As a demonstration of an efficient single-iteration least-
squares Q migration, we apply Equation (8) to a 3D marine 
seismic data set acquired in Quad 22 of the UKCS Central 
North Sea. This data contains geology typical of the area 
and was part of a much larger data set consisting of 
multiple conventional and variable-depth, narrow-azimuth 
towed-streamer acquisitions (Hollingworth et al., 2015). In 
Figure 3 we show a zoom of a common-offset (480 m) 
depth migrated region containing a salt diapir cutting 
through otherwise mildly dipping horizons (the upper 
Cretaceous chalk package). Similar to the offshore Gabon 
example, the same data with the same data pre-processing 
is used in the imaging, including the steps designed to 
improve the quality of the standard Kirchhoff image. 
Comparing the standard migration with the least-squares 
migration, neither containing Q, (Figures 3a and 3c) we see 
a degree of uplift in the event continuity, with reduced 
noise and swing artifacts. Figures 3a and 3b compare a 
standard migration with a Q-compensating migration, 
showing the uplift in resolution obtained by including Q-
compensation in the standard migration. The least-squares 
Q migration image in Figure 3d contains the best of both 
worlds: improved event coherency, more balanced 
illumination, reduced noise and swings, and a stable 
increase in resolution. In Figure 4 we plot the amplitude 
spectra of these four images, with the least-squares Q 
migration showing the flattest spectra out to the highest 
frequency. It is clear from the data in Figure 3d that this is 
not just a boost of higher frequency noise. 
 

 

Conclusions 
 
We have shown that application of a non-iterative least-
squares Kirchhoff migration improves the AVO 
characteristics of an offshore Gabon data set. Also, we have 
proposed efficient ways to include attenuation in this least-
squares migration process and demonstrated a stable uplift 
in resolution and amplitude fidelity from one such scheme 
on a Central North Sea data set. 
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Figure 3:  Comparison of common-offset Kirchhoff depth migrations: (a) standard migration, (b) Q-compensating standard migration, (c), single-
iteration least-squares migration, and (d) single-iteration least-squares Q migration. Note the improved event coherency, more balanced 
illumination, reduced noise and swings, and a stable increase in resolution in the least-squares Q migration image (d). 

Figure 4:  Comparison of amplitude spectra from the four data sets 
shown in Figure 3. 

 


