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SUMMARY
For reverse time migration, the deconvolution imaging condition offers the strongest possibility for source
designature and compensation of illumination, but cross-correlation-based imaging conditions are
currently the most widely used due to their high stability. We propose here a general theoretical frame and
practical solution for stabilizing deconvolution-based reverse time migration. Our approach involves an
optimization scheme regularized by a set of constraints. The proposed constraints insure both high
resolution and removal of low frequency migration noise arising in the case of diving or reflected waves in
the background model. We show the improvement obtained with our approach on synthetic and real
datasets.
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 Introduction 

Reverse Time Migration (RTM) has become a commonly-used high-quality tool to image complex 
media (Zhang and Sun, 2009). While always based on numerical solutions of the wave equation the 
various RTM kernels may differ by their imaging principle. The most commonly used are the cross-
correlation-based ones favored by their unconditional stability (Claerbout, 1971). however, these 
require pre/post-processing for source wavelet removal, and are hardly “true amplitude” (Zhang and 
Sun, 2009). The deconvolution imaging condition (Claerbout, 1971), which naturally provides a better 
source wavelet removal, also potentially improves illumination compensation (and thus amplitude 
preservation (Keho and Beydoun, 1988)), and reduces migration cross-talk due to multiples and multi-
pathing (Poole et al., 2010; Whitmore et al., 2010). For these reasons, deconvolution would be 
preferred in the presence of complex velocity models and/or multiples if not for the serious 
instabilities and artefacts resulting from its use (Guitton et al., 2007, Claerbout, 1971).  
Here, we revisit RTM with a new deconvolution-based imaging principle. We propose a general 
formalism based on optimization theory, mitigating the pitfalls of deconvolution imaging while 
enhancing its resolution (through a sparseness constraint) and attenuating artefacts such as the low 
frequency migration noise that arise in the case of diving waves or back scattering by sharp velocity 
contrasts (Zhang and Sun, 2009, Yoon and Marfurt, 2006) (Figure 1). 

Figure 1 Sigsbee2a data. Left: A typical cross-correlation RTM stack image. It exhibits illumination 

issues (red ellipse) and back scattering noise (yellow ellipse) which has been partly attenuated by a 

post-migration Laplacian filter (Zhang and Sun, 2009). Right: Proposed new imaging condition stack. 

Deconvolution imaging condition 

In his pioneering paper, Claerbout (1971) established depth migration through an imaging principle 

where the subsurface image is built taking the zero time cross-correlation of the incident and reflected 

wave fields at the image point: 

       ,s,x)s,(x,sx, increfincrefcor PPdtPPI


 0 .   (1) 

Pinc(x,s,t) denotes the incident wave field at position x in the image for a source position s and a time t 

(corresponding angular frequency is ), Pref(x,s,t) denotes the reflected wave field, × denotes time 

correlation and 
*
 denotes complex conjugation. Claerbout (1971) also emphasized that when using a 

deconvolution imaging principle,      s,x,/sx, increfdec PPdI  , the image is (under some 

assumptions) a reflectivity function directly proportional to the local reflection coefficient, R (x,s), 

      sx,s,x,/sx, max

max

max

R



2  increfdec PPdI  .     (2) 

This interpretation relies on assumptions of Kirchhoff forward modelling and migration, i.e. high 

frequency asymptotic approximation, linearization, pre-critical reflection, full illumination and a 

single wave path from source point to any image point (Stolk and Symes, 2004, Bleistein et al., 2001). 

Thus the deconvolution imaging condition preserves amplitude. Moreover it is potentially more 

accurate than the classical cross-correlation imaging condition even if it suffers from instabilities and 
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 artefacts which are difficult to mitigate (Guitton et al., 2007). We develop a practical formalism and 

implementation for stabilizing and improving deconvolution RTM. 

Deconvolution RTM as an optimization problem 

The idea is to set deconvolution migration as a constrained optimized problem, i.e. finding the 

distribution of reflection coefficients, R(x,s,) (in its general form we allow it to depend on ), such 

that the following cost function is minimal. We denote 
pp

addda )s,(x,sx)s,(x,   : 

       )s,(x,)s,(x,s,x,/)s,(x,  RRR constrPPC incref 
2

2

1
.      (3) 

β(x,s,ω) is a “data” weight compatible with preserved-amplitude migration and constr[R(x,s,ω)] is 

any set of appropriate constraints on the reflectivity. β(x,s,ω) should vary smoothly in the ω -direction 

and insure no singularity due to very small values of Pinc(x,s,), for example 

regul
incincinc PPP

2
/ ,        (4) 

where the regularized <|Pinc|
2
>regul can be obtained using smoothing and damping (Guitton et al.,

2007). The constraints on R(x,s,ω) should at least force it to be non-oscillating in the ω-direction, but 

can also contain any other physical constraint. 

The principle behind eq. (3) is that, within assumptions of Kirchhoff forward modelling and 

migration, we can recover the reflectivity by “cleaning” Pref/Pinc of its ω-direction “oscillatory” 

components (explaining the choice of an L2-norm optimization on the data). This is in agreement with 

the principle of Claerbout (1971) that can be reformulated: Reflectors exist at points in the ground 

where the incident wavefield finds frequency coherence with the reflected wavefield. 

Within the high-frequency hypothesis R(x,s,ω) does not depend on ; we then have R(x,s). This 

represents the conventional reflectivity function that is the basis for amplitude versus angle (AVA) 

studies and recoverable through true or preserved amplitude migration (Bleistein et al., 2001). We will 

stick to this approximation from now on. 

This formalism provides (up to a multiplicative constant) Claerbout’s regularized deconvolution 

imaging condition (Claerbout, 1971, Guitton et al., 2007) when β(x,s,ω) is limited to eq. (4) and no 

constraint is introduced. In its general form, eq. (3) generalizes the deconvolution imaging condition, 

allowing various types of physical or geological constraints. 

Constraints for high resolution and low frequency noise removal 

As a constraint on the reflectivity we propose an Lp-norm constraint, 

  pconstr
p

/s)(x,s)(x,s)(x, RR  ,           (5) 

where (x,s) is a weighting factor and p<2 is real and positive. If the true reflectivity of the subsurface 

can be represented as a sparse spike series, an L1-norm constraint (i.e. p=1) will recover the spike 

train (Taylor et al., 1979), hence the name “high resolution” constraint. Indeed an L1-norm penalizes 

less the strong or isolated reflectors in R(x,s) than a L2-norm, thus allowing the isolation and spiking 

of those reflectors. If the spike train assumption is too strong according to true subsurface properties, 

we propose to increase p (keeping it <2), relaxing this assumption. The optimum p value thus depends 

on the subsurface. (x,s) must be tuned according to uncertainties in R(x,s) to favor high-resolution 

without generating noticeable artifacts. 

A second issue that can naturally be solved within the frame of our formalism is the removal of low 

frequency migration noise. This appears when incident and reflected waves propagate locally along 

nearly parallel directions, i.e. for diving waves or in case of reflected events due to a sharp contrast in 

the propagating velocity (for instance due to salt) (Zhang and Sun, 2009), in violation of migration 

theory assumptions. Several solutions have been proposed for remedying this. Among them we have 

the application of a Laplacian filter to the image as a post-processing (Zhang and Sun, 2009), or the 

elimination of the components of the data producing the artefact in the propagated wave fields using, 

for example, Poynting vectors (Yoon and Marfurt, 2006). Note that this can be accounted for within 

our formalism by adding a propagation direction to β(x,s,ω). While these approaches can be efficient 

they also have drawbacks in terms of accuracy or computing efficiency (Guitton et al., 2007b). 
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 Low frequency migration noise is caused by effects that violate Kirchhoff modelling and migration 

assumptions. We propose to parameterize their contribution to the “non-oscillatory” part of Pref/Pinc, 

by including in expression (3) a decomposition of the migrated image into a reflectivity part, R(x,s), 

and a noise part, S(x,s), 

       s)(x,s),(x,s)(x,s)(x,s,x,/)s,(x,, SconstrSPPSC incref RRR 
2

2

1
 .     (6) 

Considering S(x,s) as low frequency noise, we choose a constraint 

   s)(x,/s)(x,s)(x,s)(x,s),(x, SsmoothpSconstr
p

 RR  ,       (7)   

where smooth[S(x,s)] denotes a smoothness constraint (in the x-domain) on S, that can be 

implemented using a second-order spatial derivative. Eq. (6) is resolved by a joint iterative non-linear 

inversion of R and S. It allows the “cleansing” of the reflectivity from S in each of the common shot 

migrated gathers. If β(x,s,ω) is chosen as in eq. (4), eq. (6) can be reformulated as a post-processing of 

common shot gather migrated using regularized deconvolution. 

The approach of removing low frequency migration noise by minimizing a least squares cost function 

has been used by Guitton et al. (2007b). Here we use different constraints and a general formalism.  

Applications 

We present the application of our new approach (eq. (6)) involving deconvolution with a high 

resolution constraint and low frequency noise removal to a synthetic and a real dataset. We compare 

the results obtained with our approach to those obtained with a more conventional RTM  involving a 

cross-correlation imaging condition, amplitude compensation and Laplacian post-processing for low 

frequency noise removal (Zhang et al., 2009). 

Figures 1 to 3 show results on the synthetic Sigsbee dataset (Guitton et al., 2007). Figure 1 shows an 

overall view, and underlines that illumination is increased under the salt and amplitudes are better 

balanced with the new imaging condition because it is deconvolution-based. Figure 2 shows the 

ability of the new imaging condition to remove the low frequency migration noise due to the strong 

reflections at the base and top of salt. Note that the result obtained with the cross-correlation RTM 

and the Laplacian filter have also significantly attenuated the artefact. Figure 3 shows that the new 

imaging condition has the ability to increase resolution in zones where there is no salt, compared to 

both cross-correlation and unconstrained deconvolution.  

Figures 4 shows the results on a real dataset. The source wavelet was estimated with a standard 

process and we can observe the improved resolution obtained with our new imaging condition.  

Conclusion 

Conventional deconvolution based RTM suffers from stabilization issues, and we have developed a 

general frame for its regularization. The problem is set as an optimization problem for which we have 

the possibility to introduce various types of constraints. We have presented two types, one for 

enhancing resolution under the hypothesis of reflector sparseness and a second for removing low 

frequency migration noise. Applications on the Sigsbee synthetic and on a real dataset show the 

improvements brought by the approach compared to a conventional cross-correlation based RTM. 

Acknowledgements 

We thank CGG for the permission to publish this work, and GDF Suez E&P Nederland B.V. for the 

permission to show the seismic data. We thank Botao Qin and Ghislain Viguier for their involvement 

on various aspects of the subject.   

References 

Bleistein, N., Cohen, J.K., Stockwell, J.W. [2001] Mathematics of Multidimensional Seismic Imaging, 
Migration, and Inversion. Springer-Verlag, New-York.
Claerbout, J. [1971] Toward a unified theory of reflector mapping. Geophysics, 36, 467.
Guitton, A., Valenciano, A.,  Bevc, D., Claerbout, J. [2007] Smoothing imaging condition for shot-
profile migration. Geophysics, 72, S149.
Guitton, A., Kaelin, B., Biondi, B. [2007b] Least-squares attenuation of reverse-time-migration 
artifacts. Geophysics, 72, S19.



30 May – 2 June 2016 | Reed Messe Wien

                            
                                                                                                                      

78th EAGE Conference & Exhibition 2016  
Vienna, Austria, 30 May – 2 June 2016 

  Keho, T.H., Beydoun, W.B., 1988. Paraxial ray Kirchhoff migration, Geophysics, 53, 12, p. 1540-1546.

 Lu, S., Whitmore, N.D., Valenciano, A.A., Chemingui, N., 2011. Imaging of primaries and multiples
with 3D SEAN synthetic, SEG San Antonio Annual Meeting.

 Poole, T.L., Curtis, A., Robertsson, J.O.A., Van Manen, D.J., 2010. Deconvolution imaging conditions
and cross-talk suppression, Geophysics, Vol. 75, W1.

 Stolk, C.C., Symes, W.W., 2004. Kinematic artifacts in prestack depth migration, Geophysics, 69, 2, p.
562–575.

 Taylor, H.L., Banks, S.C., McCoy, J.F., 1979. Deconvolution with the L1, norm, Geophysics, 44, 1, p.
39-52.

 Whitmore, N.D., Valenciano, A.A., Solner, W., 2010. Imaging of primaries and multiples using a dual-
sensor streamer, SEG Denver Annual Meeting.

 Yoon, K., Marfurt, K.J., 2006. Reverse-time migration using the Poynting vector, Exploration
Geophysics, Vol. 37, p. 102-106.

 Zhang, Y., Sun, J., 2009. Practical issues of reverse time migration: true-amplitude gathers, noise
removal and harmonic-source encoding, First Break, Vol. 26, p. 19-25.

Figure 2 Sigsbee2a data, top and base of salt. Left: Unconstrained deconvolution (low frequency 

migration noise above base of salt). Middle: New imaging condition. Right: Cross-correlation (with 

Laplacian filtering). 

Figure 3 Sigsbee2a data, sediment area. Left: Unconstrained deconvolution. Middle: New imaging 

condition. Right: Cross-correlation. 

Figure 4 Real data. Left: New imaging condition. Right: Cross-correlation. 


